191 research outputs found

    Efficient Dynamic Approximate Distance Oracles for Vertex-Labeled Planar Graphs

    Full text link
    Let GG be a graph where each vertex is associated with a label. A Vertex-Labeled Approximate Distance Oracle is a data structure that, given a vertex vv and a label λ\lambda, returns a (1+ε)(1+\varepsilon)-approximation of the distance from vv to the closest vertex with label λ\lambda in GG. Such an oracle is dynamic if it also supports label changes. In this paper we present three different dynamic approximate vertex-labeled distance oracles for planar graphs, all with polylogarithmic query and update times, and nearly linear space requirements

    The Power of Dynamic Distance Oracles: Efficient Dynamic Algorithms for the Steiner Tree

    Get PDF
    In this paper we study the Steiner tree problem over a dynamic set of terminals. We consider the model where we are given an nn-vertex graph G=(V,E,w)G=(V,E,w) with positive real edge weights, and our goal is to maintain a tree which is a good approximation of the minimum Steiner tree spanning a terminal set SVS \subseteq V, which changes over time. The changes applied to the terminal set are either terminal additions (incremental scenario), terminal removals (decremental scenario), or both (fully dynamic scenario). Our task here is twofold. We want to support updates in sublinear o(n)o(n) time, and keep the approximation factor of the algorithm as small as possible. We show that we can maintain a (6+ε)(6+\varepsilon)-approximate Steiner tree of a general graph in O~(nlogD)\tilde{O}(\sqrt{n} \log D) time per terminal addition or removal. Here, DD denotes the stretch of the metric induced by GG. For planar graphs we achieve the same running time and the approximation ratio of (2+ε)(2+\varepsilon). Moreover, we show faster algorithms for incremental and decremental scenarios. Finally, we show that if we allow higher approximation ratio, even more efficient algorithms are possible. In particular we show a polylogarithmic time (4+ε)(4+\varepsilon)-approximate algorithm for planar graphs. One of the main building blocks of our algorithms are dynamic distance oracles for vertex-labeled graphs, which are of independent interest. We also improve and use the online algorithms for the Steiner tree problem.Comment: Full version of the paper accepted to STOC'1

    Connectivity Oracles for Graphs Subject to Vertex Failures

    Full text link
    We introduce new data structures for answering connectivity queries in graphs subject to batched vertex failures. A deterministic structure processes a batch of ddd\leq d_{\star} failed vertices in O~(d3)\tilde{O}(d^3) time and thereafter answers connectivity queries in O(d)O(d) time. It occupies space O(dmlogn)O(d_{\star} m\log n). We develop a randomized Monte Carlo version of our data structure with update time O~(d2)\tilde{O}(d^2), query time O(d)O(d), and space O~(m)\tilde{O}(m) for any failure bound dnd\le n. This is the first connectivity oracle for general graphs that can efficiently deal with an unbounded number of vertex failures. We also develop a more efficient Monte Carlo edge-failure connectivity oracle. Using space O(nlog2n)O(n\log^2 n), dd edge failures are processed in O(dlogdloglogn)O(d\log d\log\log n) time and thereafter, connectivity queries are answered in O(loglogn)O(\log\log n) time, which are correct w.h.p. Our data structures are based on a new decomposition theorem for an undirected graph G=(V,E)G=(V,E), which is of independent interest. It states that for any terminal set UVU\subseteq V we can remove a set BB of U/(s2)|U|/(s-2) vertices such that the remaining graph contains a Steiner forest for UBU-B with maximum degree ss

    Fast and Compact Exact Distance Oracle for Planar Graphs

    Full text link
    For a given a graph, a distance oracle is a data structure that answers distance queries between pairs of vertices. We introduce an O(n5/3)O(n^{5/3})-space distance oracle which answers exact distance queries in O(logn)O(\log n) time for nn-vertex planar edge-weighted digraphs. All previous distance oracles for planar graphs with truly subquadratic space i.e., space O(n2ϵ)O(n^{2 - \epsilon}) for some constant ϵ>0\epsilon > 0) either required query time polynomial in nn or could only answer approximate distance queries. Furthermore, we show how to trade-off time and space: for any Sn3/2S \ge n^{3/2}, we show how to obtain an SS-space distance oracle that answers queries in time O((n5/2/S3/2)logn)O((n^{5/2}/ S^{3/2}) \log n). This is a polynomial improvement over the previous planar distance oracles with o(n1/4)o(n^{1/4}) query time

    Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling

    Full text link
    A distance labeling scheme is an assignment of bit-labels to the vertices of an undirected, unweighted graph such that the distance between any pair of vertices can be decoded solely from their labels. An important class of distance labeling schemes is that of hub labelings, where a node vGv \in G stores its distance to the so-called hubs SvVS_v \subseteq V, chosen so that for any u,vVu,v \in V there is wSuSvw \in S_u \cap S_v belonging to some shortest uvuv path. Notice that for most existing graph classes, the best distance labelling constructions existing use at some point a hub labeling scheme at least as a key building block. Our interest lies in hub labelings of sparse graphs, i.e., those with E(G)=O(n)|E(G)| = O(n), for which we show a lowerbound of n2O(logn)\frac{n}{2^{O(\sqrt{\log n})}} for the average size of the hubsets. Additionally, we show a hub-labeling construction for sparse graphs of average size O(nRS(n)c)O(\frac{n}{RS(n)^{c}}) for some 0<c<10 < c < 1, where RS(n)RS(n) is the so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced matchings in dense graphs. This implies that further improving the lower bound on hub labeling size to n2(logn)o(1)\frac{n}{2^{(\log n)^{o(1)}}} would require a breakthrough in the study of lower bounds on RS(n)RS(n), which have resisted substantial improvement in the last 70 years. For general distance labeling of sparse graphs, we show a lowerbound of 12O(logn)SumIndex(n)\frac{1}{2^{O(\sqrt{\log n})}} SumIndex(n), where SumIndex(n)SumIndex(n) is the communication complexity of the Sum-Index problem over ZnZ_n. Our results suggest that the best achievable hub-label size and distance-label size in sparse graphs may be Θ(n2(logn)c)\Theta(\frac{n}{2^{(\log n)^c}}) for some 0<c<10<c < 1

    Prioritized Metric Structures and Embedding

    Full text link
    Metric data structures (distance oracles, distance labeling schemes, routing schemes) and low-distortion embeddings provide a powerful algorithmic methodology, which has been successfully applied for approximation algorithms \cite{llr}, online algorithms \cite{BBMN11}, distributed algorithms \cite{KKMPT12} and for computing sparsifiers \cite{ST04}. However, this methodology appears to have a limitation: the worst-case performance inherently depends on the cardinality of the metric, and one could not specify in advance which vertices/points should enjoy a better service (i.e., stretch/distortion, label size/dimension) than that given by the worst-case guarantee. In this paper we alleviate this limitation by devising a suit of {\em prioritized} metric data structures and embeddings. We show that given a priority ranking (x1,x2,,xn)(x_1,x_2,\ldots,x_n) of the graph vertices (respectively, metric points) one can devise a metric data structure (respectively, embedding) in which the stretch (resp., distortion) incurred by any pair containing a vertex xjx_j will depend on the rank jj of the vertex. We also show that other important parameters, such as the label size and (in some sense) the dimension, may depend only on jj. In some of our metric data structures (resp., embeddings) we achieve both prioritized stretch (resp., distortion) and label size (resp., dimension) {\em simultaneously}. The worst-case performance of our metric data structures and embeddings is typically asymptotically no worse than of their non-prioritized counterparts.Comment: To appear at STOC 201
    corecore