46,344 research outputs found

    Incentive-compatible route coordination of crowdsourced resources

    Full text link
    Technical ReportWith the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen-ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1-approximation algorithm to solve the 2 problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments

    What’s in it for me? Incentive-compatible route coordination of crowdsourced resources

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresence-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1/2-approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798

    Incentive compatible route coordination of crowdsourced resources and its application to GeoPresence-as-a-Service

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen- ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent's exibility is exploited to maximize the coverage of a mo- bility field, with an objective to maximize the revenue collected from sat- isfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1 2 -approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent's truthfulness about its exibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Cargo Consolidation and Distribution Through a Terminals-Network: A Branch-And-Price Approach

    Get PDF
    Less-than-truckload is a transport modality that includes many practical variations to convey a number of transportation-requests from the origin locations to their destinations by using the possibility of goods-transshipments on the carrier?s terminals-network. In this way logistics companies are required to consolidate shipments from different suppliers in the outbound vehicles at a terminal of the network. We present a methodology for finding near-optimal solutions to a less-than-truckload shipping modality used for cargo consolidation and distribution through a terminals-network. The methodology uses column generation combined with an incomplete branch-and-price procedure.Fil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica. Universidad Nacional del Litoral. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica; Argentin

    A Review of Trip Planning Systems.

    Get PDF
    This report reviews current information provision in all modes of transport and assesses the needs for and benefits of trip planning systems. The feasibility of trip planning systems is discussed given the current state of technology and information availability and supply. The review was stimulated by technological developments in telecommunications and information technology which are providing the possibility of a greatly enhanced quality of information to aid trip planning decisions. Amongst the conclusions reached were the following: Current information provision is considered deficient in many respects. Travellers are often unaware of alternative routes or services and many are unable to acquire adequate information from one source especially for multi-modal journeys. In addition, there is a lack of providing real time information where it is required (bus stops and train stations) and of effective interaction of static and real time information. Most of the projects, which integrate static and dynamic data, are single mode systems. Therefore there is a need for an integrated trip planning system which can inform and guide on all aspects of transport. Trip planning systems can provide assistance in trip planning (before and during the journey) using one or a number of modes of travel, taking into account travellers preferences and constraints, and effectively integrating static and dynamic data. Trip planning systems could adversely affect traffic demand as people who become aware of new opportunities might be encouraged to make more journeys. It could also affect travellers choice as a result of over-saturation of information, over-reaction to predictive information, and concentration on the same 'best' routes. However, it can be argued, based on existing evidence, that such a system can benefit travellers, and transport operators as well as the public sector responsible for executing transport policies. Travellers can benefit by obtaining adequate information to help them in making optimal decisions and reducing uncertainty and stress associated with travel. Public transport operators can benefit by making their services known to customers, leading to increased patronage. Public transport authorities can use the supply of information to execute their transport policies and exercise more control over traffic management

    Enabling the freight traffic controller for collaborative multi-drop urban logistics: practical and theoretical challenges

    Get PDF
    There is increasing interest in how horizontal collaboration between parcel carriers might help alleviate problems associated with last-mile logistics in congested urban centers. Through a detailed review of the literature on parcel logistics pertaining to collaboration, along with practical insights from carriers operating in the United Kingdom, this paper examines the challenges that will be faced in optimizing multicarrier, multidrop collection, and delivery schedules. A “freight traffic controller” (FTC) concept is proposed. The FTC would be a trusted third party, assigned to equitably manage the work allocation between collaborating carriers and the passage of vehicles over the last mile when joint benefits to the parties could be achieved. Creating this FTC concept required a combinatorial optimization approach for evaluation of the many combinations of hub locations, network configuration, and routing options for vehicle or walking to find the true value of each potential collaboration. At the same time, the traffic, social, and environmental impacts of these activities had to be considered. Cooperative game theory is a way to investigate the formation of collaborations (or coalitions), and the analysis used in this study identified a significant shortfall in current applications of this theory to last-mile parcel logistics. Application of theory to urban freight logistics has, thus far, failed to account for critical concerns including (a) the mismatch of vehicle parking locations relative to actual delivery addresses; (b) the combination of deliveries with collections, requests for the latter often being received in real time during the round; and (c) the variability in travel times and route options attributable to traffic and road network conditions
    • 

    corecore