1,038 research outputs found

    Improvement of a security enhanced one-time two-factor authentication and key agreement scheme

    Get PDF
    AbstractIn 2010, Hölbl et al. showed that Shieh et al.’s mutual authentication and key agreement scheme is vulnerable to the smart card lost attack, not achieving perfect forward secrecy, and proposed a security enhanced scheme to eliminate these weaknesses. In this paper, we show that Hölbl et al.’s security enhancement is still vulnerable to the smart card lost attacks. In addition, their scheme cannot resist impersonation attacks and parallel session attacks. Seeing that the existing mutual authentication schemes using smart cards are almost vulnerable to the smart card lost attacks, we further propose a new one-time two-factor mutual authentication and key agreement scheme to eliminate these weaknesses

    Privacy protection for telecare medicine information systems using a chaotic map-based three-factor authenticated key agreement scheme

    Get PDF
    Telecare Medicine Information Systems (TMIS) provides flexible and convenient e-health care. However the medical records transmitted in TMIS are exposed to unsecured public networks, so TMIS are more vulnerable to various types of security threats and attacks. To provide privacy protection for TMIS, a secure and efficient authenticated key agreement scheme is urgently needed to protect the sensitive medical data. Recently, Mishra et al. proposed a biometrics-based authenticated key agreement scheme for TMIS by using hash function and nonce, they claimed that their scheme could eliminate the security weaknesses of Yan et al.’s scheme and provide dynamic identity protection and user anonymity. In this paper, however, we demonstrate that Mishra et al.’s scheme suffers from replay attacks, man-in-the-middle attacks and fails to provide perfect forward secrecy. To overcome the weaknesses of Mishra et al.’s scheme, we then propose a three-factor authenticated key agreement scheme to enable the patient enjoy the remote healthcare services via TMIS with privacy protection. The chaotic map-based cryptography is employed in the proposed scheme to achieve a delicate balance of security and performance. Security analysis demonstrates that the proposed scheme resists various attacks and provides several attractive security properties. Performance evaluation shows that the proposed scheme increases efficiency in comparison with other related schemes
    • …
    corecore