1,125 research outputs found

    Analyzing Large Collections of Electronic Text Using OLAP

    Full text link
    Computer-assisted reading and analysis of text has various applications in the humanities and social sciences. The increasing size of many electronic text archives has the advantage of a more complete analysis but the disadvantage of taking longer to obtain results. On-Line Analytical Processing is a method used to store and quickly analyze multidimensional data. By storing text analysis information in an OLAP system, a user can obtain solutions to inquiries in a matter of seconds as opposed to minutes, hours, or even days. This analysis is user-driven allowing various users the freedom to pursue their own direction of research

    Flexible Integration and Efficient Analysis of Multidimensional Datasets from the Web

    Get PDF
    If numeric data from the Web are brought together, natural scientists can compare climate measurements with estimations, financial analysts can evaluate companies based on balance sheets and daily stock market values, and citizens can explore the GDP per capita from several data sources. However, heterogeneities and size of data remain a problem. This work presents methods to query a uniform view - the Global Cube - of available datasets from the Web and builds on Linked Data query approaches

    Dimensional enrichment of statistical linked open data

    Get PDF
    On-Line Analytical Processing (OLAP) is a data analysis technique typically used for local and well-prepared data. However, initiatives like Open Data and Open Government bring new and publicly available data on the web that are to be analyzed in the same way. The use of semantic web technologies for this context is especially encouraged by the Linked Data initiative. There is already a considerable amount of statistical linked open data sets published using the RDF Data Cube Vocabulary (QB) which is designed for these purposes. However, QB lacks some essential schema constructs (e.g., dimension levels) to support OLAP. Thus, the QB4OLAP vocabulary has been proposed to extend QB with the necessary constructs and be fully compliant with OLAP. In this paper, we focus on the enrichment of an existing QB data set with QB4OLAP semantics. We first thoroughly compare the two vocabularies and outline the benefits of QB4OLAP. Then, we propose a series of steps to automate the enrichment of QB data sets with specific QB4OLAP semantics; being the most important, the definition of aggregate functions and the detection of new concepts in the dimension hierarchy construction. The proposed steps are defined to form a semi-automatic enrichment method, which is implemented in a tool that enables the enrichment in an interactive and iterative fashion. The user can enrich the QB data set with QB4OLAP concepts (e.g., full-fledged dimension hierarchies) by choosing among the candidate concepts automatically discovered with the steps proposed. Finally, we conduct experiments with 25 users and use three real-world QB data sets to evaluate our approach. The evaluation demonstrates the feasibility of our approach and shows that, in practice, our tool facilitates, speeds up, and guarantees the correct results of the enrichment process.Peer ReviewedPostprint (author's final draft

    RDF Analytics: Lenses over Semantic Graphs

    Get PDF
    International audienceThe development of Semantic Web (RDF) brings new requirements for data analytics tools and methods, going beyond querying to semantics-rich analytics through warehouse-style tools. In this work, we fully redesign, from the bottom up, core data analytics concepts and tools in the context of RDF data, leading to the first complete formal framework for warehouse-style RDF analytics. Notably, we define i) analytical schemas tailored to heterogeneous, semantics-rich RDF graph, ii) analytical queries which (beyond relational cubes) allow flexible querying of the data and the schema as well as powerful aggregation and iii) OLAP-style operations. Experiments on a fully-implemented platform demonstrate the practical interest of our approach

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft
    • …
    corecore