454 research outputs found

    Specifying and Analysing SOC Applications with COWS

    Get PDF
    COWS is a recently defined process calculus for specifying and combining service-oriented applications, while modelling their dynamic behaviour. Since its introduction, a number of methods and tools have been devised to analyse COWS specifications, like e.g. a type system to check confidentiality properties, a logic and a model checker to express and check functional properties of services. In this paper, by means of a case study in the area of automotive systems, we demonstrate that COWS, with some mild linguistic additions, can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We also provide a flavour of the properties that can be analysed by using the tools mentioned above

    A Logical Verification Methodology for Service-Oriented Computing

    Get PDF
    We introduce a logical verification methodology for checking behavioural properties of service-oriented computing systems. Service properties are described by means of SocL, a branching-time temporal logic that we have specifically designed to express in an effective way distinctive aspects of services, such as, e.g., acceptance of a request, provision of a response, and correlation among service requests and responses. Our approach allows service properties to be expressed in such a way that they can be independent of service domains and specifications. We show an instantiation of our general methodology that uses the formal language COWS to conveniently specify services and the expressly developed software tool CMC to assist the user in the task of verifying SocL formulae over service specifications. We demonstrate feasibility and effectiveness of our methodology by means of the specification and the analysis of a case study in the automotive domain

    A compensating transaction example in twelve notations

    Get PDF
    The scenario of business computer systems changed with the advent of cross-entity computer interactions: computer systems no longer had the limited role of storing and processing data, but became themselves the players which actuated real-life actions. These advancements rendered the traditional transaction mechanism insufficient to deal with these new complexities of longer multi-party transactions. The concept of compensations has long been suggested as a solution, providing the possibility of executing ā€œcounterā€-actions which semantically undo previously completed actions in case a transaction fails. There are numerous design options related to compensations particularly when deciding the strategy of ordering compensating actions. Along the years, various models which include compensations have emerged, each tackling in its own way these options. In this work, we review a number of notations which handle compensations by going through their syntax and semantics ā€” highlighting the distinguishing features ā€” and encoding a typical compensating transaction example in terms of each of these notations.peer-reviewe

    An Integrated Methodology for Creating Composed Web/Grid Services

    Get PDF
    This thesis presents an approach to design, specify, validate, verify, implement, and evaluate composed web/grid services. Web and grid services can be composed to create new services with complex behaviours. The BPEL (Business Process Execution Language) standard was created to enable the orchestration of web services, but there have also been investigation of its use for grid services. BPEL specifies the implementation of service composition but has no formal semantics; implementations are in practice checked by testing. Formal methods are used in general to define an abstract model of system behaviour that allows simulation and reasoning about properties. The approach can detect and reduce potentially costly errors at design time. CRESS (Communication Representation Employing Systematic Specification) is a domainindependent, graphical, abstract notation, and integrated toolset for developing composite web service. The original version of CRESS had automated support for formal specification in LOTOS (Language Of Temporal Ordering Specification), executing formal validation with MUSTARD (Multiple-Use Scenario Testing and Refusal Description), and implementing in BPEL4WS as the early version of BPEL standard. This thesis work has extended CRESS and its integrated tools to design, specify, validate, verify, implement, and evaluate composed web/grid services. The work has extended the CRESS notation to support a wider range of service compositions, and has applied it to grid services as a new domain. The thesis presents two new tools, CLOVE (CRESS Language-Oriented Verification Environment) and MINT (MUSTARD Interpreter), to respectively support formal verification and implementation testing. New work has also extended CRESS to automate implementation of composed services using the more recent BPEL standard WS-BPEL 2.0

    Recovery within long running transactions

    Get PDF
    As computer systems continue to grow in complexity, the possibilities of failure increase. At the same time, the increase in computer system pervasiveness in day-to-day activities brought along increased expectations on their reliability. This has led to the need for effective and automatic error recovery techniques to resolve failures. Transactions enable the handling of failure propagation over concurrent systems due to dependencies, restoring the system to the point before the failure occurred. However, in various settings, especially when interacting with the real world, reversal is not possible. The notion of compensations has been long advocated as a way of addressing this issue, through the specification of activities which can be executed to undo partial transactions. Still, there is no accepted standard theory; the literature offers a plethora of distinct formalisms and approaches. In this survey, we review the compensations from a theoretical point of view by: (i) giving a historic account of the evolution of compensating transactions; (ii) delineating and describing a number of design options involved; (iii) presenting a number of formalisms found in the literature, exposing similarities and differences; (iv) comparing formal notions of compensation correctness; (v) giving insights regarding the application of compensations in practice; and (vi) discussing current and future research trends in the area.peer-reviewe

    Dynamic Privacy Management In Services Based Interactions

    Get PDF
    Technology advancements have enabled the distribution and sharing of users personal data over several data sources. Each data source is potentially managed by a different organization, which may expose its data as a Web service. Using such Web services, dynamic composition of atomic data items coupled with the context in which the data is accessed may breach sensitive data that may not comply with the users preference at the time of data collection. Thus, providing uniform access policies to such data can lead to privacy problems. Some fairly recent research has focused on providing solutions for dynamic privacy management. This thesis advances these techniques, and fills some gaps in the existing works. In particular, dynamically incorporating user access context into the privacy policy decision, and its enforcement
    • ā€¦
    corecore