206,279 research outputs found

    Efficient Algorithms for the Data Exchange Problem

    Full text link
    In this paper we study the data exchange problem where a set of users is interested in gaining access to a common file, but where each has only partial knowledge about it as side-information. Assuming that the file is broken into packets, the side-information considered is in the form of linear combinations of the file packets. Given that the collective information of all the users is sufficient to allow recovery of the entire file, the goal is for each user to gain access to the file while minimizing some communication cost. We assume that users can communicate over a noiseless broadcast channel, and that the communication cost is a sum of each user's cost function over the number of bits it transmits. For instance, the communication cost could simply be the total number of bits that needs to be transmitted. In the most general case studied in this paper, each user can have any arbitrary convex cost function. We provide deterministic, polynomial-time algorithms (in the number of users and packets) which find an optimal communication scheme that minimizes the communication cost. To further lower the complexity, we also propose a simple randomized algorithm inspired by our deterministic algorithm which is based on a random linear network coding scheme.Comment: submitted to Transactions on Information Theor

    Near-Optimal Budgeted Data Exchange for Distributed Loop Closure Detection

    Full text link
    Inter-robot loop closure detection is a core problem in collaborative SLAM (CSLAM). Establishing inter-robot loop closures is a resource-demanding process, during which robots must consume a substantial amount of mission-critical resources (e.g., battery and bandwidth) to exchange sensory data. However, even with the most resource-efficient techniques, the resources available onboard may be insufficient for verifying every potential loop closure. This work addresses this critical challenge by proposing a resource-adaptive framework for distributed loop closure detection. We seek to maximize task-oriented objectives subject to a budget constraint on total data transmission. This problem is in general NP-hard. We approach this problem from different perspectives and leverage existing results on monotone submodular maximization to provide efficient approximation algorithms with performance guarantees. The proposed approach is extensively evaluated using the KITTI odometry benchmark dataset and synthetic Manhattan-like datasets.Comment: RSS 2018 Extended Versio

    Computing on Vertices in Data Mining

    Get PDF
    The main challenges in data mining are related to large, multi-dimensional data sets. There is a need to develop algorithms that are precise and efficient enough to deal with big data problems. The Simplex algorithm from linear programming can be seen as an example of a successful big data problem solving tool. According to the fundamental theorem of linear programming the solution of the optimization problem can found in one of the vertices in the parameter space. The basis exchange algorithms also search for the optimal solution among finite number of the vertices in the parameter space. Basis exchange algorithms enable the design of complex layers of classifiers or predictive models based on a small number of multivariate data vectors

    Mining XML documents with association rule algorithms

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2008Includes bibliographical references (leaves: 59-63)Text in English; Abstract: Turkish and Englishx, 63 leavesFollowing the increasing use of XML technology for data storage and data exchange between applications, the subject of mining XML documents has become more researchable and important topic. In this study, we considered the problem of Mining Association Rules between items in XML document. The principal purpose of this study is applying association rule algorithms directly to the XML documents with using XQuery which is a functional expression language that can be used to query or process XML data. We used three different algorithms; Apriori, AprioriTid and High Efficient AprioriTid. We give comparisons of mining times of these three apriori-like algorithms on XML documents using different support levels, different datasets and different dataset sizes

    A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments

    Get PDF
    We propose a class of subspace ascent methods for computing optimal approximate designs that covers both existing as well as new and more efficient algorithms. Within this class of methods, we construct a simple, randomized exchange algorithm (REX). Numerical comparisons suggest that the performance of REX is comparable or superior to the performance of state-of-the-art methods across a broad range of problem structures and sizes. We focus on the most commonly used criterion of D-optimality that also has applications beyond experimental design, such as the construction of the minimum volume ellipsoid containing a given set of data-points. For D-optimality, we prove that the proposed algorithm converges to the optimum. We also provide formulas for the optimal exchange of weights in the case of the criterion of A-optimality. These formulas enable one to use REX for computing A-optimal and I-optimal designs.Comment: 23 pages, 2 figure
    corecore