21,731 research outputs found

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie

    Efficient Identification of Equivalences in Dynamic Graphs and Pedigree Structures

    Full text link
    We propose a new framework for designing test and query functions for complex structures that vary across a given parameter such as genetic marker position. The operations we are interested in include equality testing, set operations, isolating unique states, duplication counting, or finding equivalence classes under identifiability constraints. A motivating application is locating equivalence classes in identity-by-descent (IBD) graphs, graph structures in pedigree analysis that change over genetic marker location. The nodes of these graphs are unlabeled and identified only by their connecting edges, a constraint easily handled by our approach. The general framework introduced is powerful enough to build a range of testing functions for IBD graphs, dynamic populations, and other structures using a minimal set of operations. The theoretical and algorithmic properties of our approach are analyzed and proved. Computational results on several simulations demonstrate the effectiveness of our approach.Comment: Code for paper available at http://www.stat.washington.edu/~hoytak/code/hashreduc

    Challenges in Bridging Social Semantics and Formal Semantics on the Web

    Get PDF
    This paper describes several results of Wimmics, a research lab which names stands for: web-instrumented man-machine interactions, communities, and semantics. The approaches introduced here rely on graph-oriented knowledge representation, reasoning and operationalization to model and support actors, actions and interactions in web-based epistemic communities. The re-search results are applied to support and foster interactions in online communities and manage their resources
    • …
    corecore