181 research outputs found

    Factoring bivariate sparse (lacunary) polynomials

    Get PDF
    We present a deterministic algorithm for computing all irreducible factors of degree d\le d of a given bivariate polynomial fK[x,y]f\in K[x,y] over an algebraic number field KK and their multiplicities, whose running time is polynomial in the bit length of the sparse encoding of the input and in dd. Moreover, we show that the factors over \Qbarra of degree d\le d which are not binomials can also be computed in time polynomial in the sparse length of the input and in dd.Comment: 20 pp, Latex 2e. We learned on January 23th, 2006, that a multivariate version of Theorem 1 had independently been achieved by Erich Kaltofen and Pascal Koira

    On the Exact Evaluation of Certain Instances of the Potts Partition Function by Quantum Computers

    Get PDF
    We present an efficient quantum algorithm for the exact evaluation of either the fully ferromagnetic or anti-ferromagnetic q-state Potts partition function Z for a family of graphs related to irreducible cyclic codes. This problem is related to the evaluation of the Jones and Tutte polynomials. We consider the connection between the weight enumerator polynomial from coding theory and Z and exploit the fact that there exists a quantum algorithm for efficiently estimating Gauss sums in order to obtain the weight enumerator for a certain class of linear codes. In this way we demonstrate that for a certain class of sparse graphs, which we call Irreducible Cyclic Cocycle Code (ICCC_\epsilon) graphs, quantum computers provide a polynomial speed up in the difference between the number of edges and vertices of the graph, and an exponential speed up in q, over the best classical algorithms known to date

    Cyclotomic Identity Testing and Applications

    Full text link
    We consider the cyclotomic identity testing problem: given a polynomial f(x1,,xk)f(x_1,\ldots,x_k), decide whether f(ζne1,,ζnek)f(\zeta_n^{e_1},\ldots,\zeta_n^{e_k}) is zero, for ζn=e2πi/n\zeta_n = e^{2\pi i/n} a primitive complex nn-th root of unity and integers e1,,eke_1,\ldots,e_k. We assume that nn and e1,,eke_1,\ldots,e_k are represented in binary and consider several versions of the problem, according to the representation of ff. For the case that ff is given by an algebraic circuit we give a randomized polynomial-time algorithm with two-sided errors, showing that the problem lies in BPP. In case ff is given by a circuit of polynomially bounded syntactic degree, we give a randomized algorithm with two-sided errors that runs in poly-logarithmic parallel time, showing that the problem lies in BPNC. In case ff is given by a depth-2 ΣΠ\Sigma\Pi circuit (or, equivalently, as a list of monomials), we show that the cyclotomic identity testing problem lies in NC. Under the generalised Riemann hypothesis, we are able to extend this approach to obtain a polynomial-time algorithm also for a very simple subclass of depth-3 ΣΠΣ\Sigma\Pi\Sigma circuits. We complement this last result by showing that for a more general class of depth-3 ΣΠΣ\Sigma\Pi\Sigma circuits, a polynomial-time algorithm for the cyclotomic identity testing problem would yield a sub-exponential-time algorithm for polynomial identity testing. Finally, we use cyclotomic identity testing to give a new proof that equality of compressed strings, i.e., strings presented using context-free grammars, can be decided in coRNC: randomized NC with one-sided errors

    Efficiently Detecting Torsion Points and Subtori

    Full text link
    Suppose X is the complex zero set of a finite collection of polynomials in Z[x_1,...,x_n]. We show that deciding whether X contains a point all of whose coordinates are d_th roots of unity can be done within NP^NP (relative to the sparse encoding), under a plausible assumption on primes in arithmetic progression. In particular, our hypothesis can still hold even under certain failures of the Generalized Riemann Hypothesis, such as the presence of Siegel-Landau zeroes. Furthermore, we give a similar (but UNconditional) complexity upper bound for n=1. Finally, letting T be any algebraic subgroup of (C^*)^n we show that deciding whether X contains T is coNP-complete (relative to an even more efficient encoding),unconditionally. We thus obtain new non-trivial families of multivariate polynomial systems where deciding the existence of complex roots can be done unconditionally in the polynomial hierarchy -- a family of complexity classes lying between PSPACE and P, intimately connected with the P=?NP Problem. We also discuss a connection to Laurent's solution of Chabauty's Conjecture from arithmetic geometry.Comment: 21 pages, no figures. Final version, with additional commentary and references. Also fixes a gap in Theorems 2 (now Theorem 1.3) regarding translated subtor

    New Bounds on Quotient Polynomials with Applications to Exact Divisibility and Divisibility Testing of Sparse Polynomials

    Full text link
    A sparse polynomial (also called a lacunary polynomial) is a polynomial that has relatively few terms compared to its degree. The sparse-representation of a polynomial represents the polynomial as a list of its non-zero terms (coefficient-degree pairs). In particular, the degree of a sparse polynomial can be exponential in the sparse-representation size. We prove that for monic polynomials f,gC[x]f, g \in \mathbb{C}[x] such that gg divides ff, the 2\ell_2-norm of the quotient polynomial f/gf/g is bounded by f1O~(g03deg2f)g01\lVert f \rVert_1 \cdot \tilde{O}(\lVert{g}\rVert_0^3\text{deg}^2{ f})^{\lVert{g}\rVert_0 - 1}. This improves upon the exponential (in degf\text{deg}{ f}) bounds for general polynomials and implies that the trivial long division algorithm runs in time quasi-linear in the input size and number of terms of the quotient polynomial f/gf/g, thus solving a long-standing problem on exact divisibility of sparse polynomials. We also study the problem of bounding the number of terms of f/gf/g in some special cases. When f,gZ[x]f, g \in \mathbb{Z}[x] and gg is a cyclotomic-free (i.e., it has no cyclotomic factors) trinomial, we prove that f/g0O(f0size(f)2log6degg)\lVert{f/g}\rVert_0 \leq O(\lVert{f}\rVert_0 \text{size}({f})^2 \cdot \log^6{\text{deg}{ g}}). When gg is a binomial with g(±1)0g(\pm 1) \neq 0, we prove that the sparsity is at most O(f0(logf0+logf))O(\lVert{f}\rVert_0 ( \log{\lVert{f}\rVert_0} + \log{\lVert{f}\rVert_{\infty}})). Both upper bounds are polynomial in the input-size. We leverage these results and give a polynomial time algorithm for deciding whether a cyclotomic-free trinomial divides a sparse polynomial over the integers. As our last result, we present a polynomial time algorithm for testing divisibility by pentanomials over small finite fields when degf=O~(degg)\text{deg}{ f} = \tilde{O}(\text{deg}{ g})
    corecore