234 research outputs found

    Finding Approximate Nash Equilibria of Bimatrix Games via Payoff Queries

    Get PDF
    We study the deterministic and randomized query complexity of finding approximate equilibria in a k × k bimatrix game. We show that the deterministic query complexity of finding an ϵ-Nash equilibrium when ϵ < ½ is Ω(k2), even in zero-one constant-sum games. In combination with previous results [Fearnley et al. 2013], this provides a complete characterization of the deterministic query complexity of approximate Nash equilibria. We also study randomized querying algorithms. We give a randomized algorithm for finding a (3-√5/2 + ϵ)-Nash equilibrium using O(k.log k/ϵ2) payoff queries, which shows that the ½ barrier for deterministic algorithms can be broken by randomization. For well-supported Nash equilibria (WSNE), we first give a randomized algorithm for finding an ϵ-WSNE of a zero-sum bimatrix game using O(k.log k/ϵ4) payoff queries, and we then use this to obtain a randomized algorithm for finding a (⅔ + ϵ)-WSNE in a general bimatrix game using O(k.log k/ϵ4) payoff queries. Finally, we initiate the study of lower bounds against randomized algorithms in the context of bimatrix games, by showing that randomized algorithms require Ω(k2) payoff queries in order to find an ϵ-Nash equilibrium with ϵ < 1/4k, even in zero-one constant-sum games. In particular, this rules out query-efficient randomized algorithms for finding exact Nash equilibria

    Polylogarithmic Supports are required for Approximate Well-Supported Nash Equilibria below 2/3

    Get PDF
    In an epsilon-approximate Nash equilibrium, a player can gain at most epsilon in expectation by unilateral deviation. An epsilon well-supported approximate Nash equilibrium has the stronger requirement that every pure strategy used with positive probability must have payoff within epsilon of the best response payoff. Daskalakis, Mehta and Papadimitriou conjectured that every win-lose bimatrix game has a 2/3-well-supported Nash equilibrium that uses supports of cardinality at most three. Indeed, they showed that such an equilibrium will exist subject to the correctness of a graph-theoretic conjecture. Regardless of the correctness of this conjecture, we show that the barrier of a 2/3 payoff guarantee cannot be broken with constant size supports; we construct win-lose games that require supports of cardinality at least Omega((log n)^(1/3)) in any epsilon-well supported equilibrium with epsilon < 2/3. The key tool in showing the validity of the construction is a proof of a bipartite digraph variant of the well-known Caccetta-Haggkvist conjecture. A probabilistic argument shows that there exist epsilon-well-supported equilibria with supports of cardinality O(log n/(epsilon^2)), for any epsilon> 0; thus, the polylogarithmic cardinality bound presented cannot be greatly improved. We also show that for any delta > 0, there exist win-lose games for which no pair of strategies with support sizes at most two is a (1-delta)-well-supported Nash equilibrium. In contrast, every bimatrix game with payoffs in [0,1] has a 1/2-approximate Nash equilibrium where the supports of the players have cardinality at most two.Comment: Added details on related work (footnote 7 expanded

    Constant Rank Bimatrix Games are PPAD-hard

    Full text link
    The rank of a bimatrix game (A,B) is defined as rank(A+B). Computing a Nash equilibrium (NE) of a rank-00, i.e., zero-sum game is equivalent to linear programming (von Neumann'28, Dantzig'51). In 2005, Kannan and Theobald gave an FPTAS for constant rank games, and asked if there exists a polynomial time algorithm to compute an exact NE. Adsul et al. (2011) answered this question affirmatively for rank-11 games, leaving rank-2 and beyond unresolved. In this paper we show that NE computation in games with rank 3\ge 3, is PPAD-hard, settling a decade long open problem. Interestingly, this is the first instance that a problem with an FPTAS turns out to be PPAD-hard. Our reduction bypasses graphical games and game gadgets, and provides a simpler proof of PPAD-hardness for NE computation in bimatrix games. In addition, we get: * An equivalence between 2D-Linear-FIXP and PPAD, improving a result by Etessami and Yannakakis (2007) on equivalence between Linear-FIXP and PPAD. * NE computation in a bimatrix game with convex set of Nash equilibria is as hard as solving a simple stochastic game. * Computing a symmetric NE of a symmetric bimatrix game with rank 6\ge 6 is PPAD-hard. * Computing a (1/poly(n))-approximate fixed-point of a (Linear-FIXP) piecewise-linear function is PPAD-hard. The status of rank-22 games remains unresolved

    Distributed Methods for Computing Approximate Equilibria

    Get PDF
    We present a new, distributed method to compute approximate Nash equilibria in bimatrix games. In contrast to previous approaches that analyze the two payoff matrices at the same time (for example, by solving a single LP that combines the two players payoffs), our algorithm first solves two independent LPs, each of which is derived from one of the two payoff matrices, and then compute approximate Nash equilibria using only limited communication between the players. Our method has several applications for improved bounds for efficient computations of approximate Nash equilibria in bimatrix games. First, it yields a best polynomial-time algorithm for computing \emph{approximate well-supported Nash equilibria (WSNE)}, which guarantees to find a 0.6528-WSNE in polynomial time. Furthermore, since our algorithm solves the two LPs separately, it can be used to improve upon the best known algorithms in the limited communication setting: the algorithm can be implemented to obtain a randomized expected-polynomial-time algorithm that uses poly-logarithmic communication and finds a 0.6528-WSNE. The algorithm can also be carried out to beat the best known bound in the query complexity setting, requiring O(nlogn)O(n \log n) payoff queries to compute a 0.6528-WSNE. Finally, our approach can also be adapted to provide the best known communication efficient algorithm for computing \emph{approximate Nash equilibria}: it uses poly-logarithmic communication to find a 0.382-approximate Nash equilibrium

    Learning Convex Partitions and Computing Game-theoretic Equilibria from Best Response Queries

    Full text link
    Suppose that an mm-simplex is partitioned into nn convex regions having disjoint interiors and distinct labels, and we may learn the label of any point by querying it. The learning objective is to know, for any point in the simplex, a label that occurs within some distance ϵ\epsilon from that point. We present two algorithms for this task: Constant-Dimension Generalised Binary Search (CD-GBS), which for constant mm uses poly(n,log(1ϵ))poly(n, \log \left( \frac{1}{\epsilon} \right)) queries, and Constant-Region Generalised Binary Search (CR-GBS), which uses CD-GBS as a subroutine and for constant nn uses poly(m,log(1ϵ))poly(m, \log \left( \frac{1}{\epsilon} \right)) queries. We show via Kakutani's fixed-point theorem that these algorithms provide bounds on the best-response query complexity of computing approximate well-supported equilibria of bimatrix games in which one of the players has a constant number of pure strategies. We also partially extend our results to games with multiple players, establishing further query complexity bounds for computing approximate well-supported equilibria in this setting.Comment: 38 pages, 7 figures, second version strengthens lower bound in Theorem 6, adds footnotes with additional comments and fixes typo

    Complexity Theory, Game Theory, and Economics: The Barbados Lectures

    Full text link
    This document collects the lecture notes from my mini-course "Complexity Theory, Game Theory, and Economics," taught at the Bellairs Research Institute of McGill University, Holetown, Barbados, February 19--23, 2017, as the 29th McGill Invitational Workshop on Computational Complexity. The goal of this mini-course is twofold: (i) to explain how complexity theory has helped illuminate several barriers in economics and game theory; and (ii) to illustrate how game-theoretic questions have led to new and interesting complexity theory, including recent several breakthroughs. It consists of two five-lecture sequences: the Solar Lectures, focusing on the communication and computational complexity of computing equilibria; and the Lunar Lectures, focusing on applications of complexity theory in game theory and economics. No background in game theory is assumed.Comment: Revised v2 from December 2019 corrects some errors in and adds some recent citations to v1 Revised v3 corrects a few typos in v
    corecore