189 research outputs found

    On the performance of broadcast algorithms in interconnection networks

    Get PDF
    Broadcast Communication is among the most primitive collective capabilities of any message passing network. Broadcast algorithms for the mesh have been widely reported in the literature. However, most existing algorithms have been studied within limited conditions, such as light traffic load and fixed network sizes. In other words, most of these algorithms have not been studied at different Quality of Service (QoS) levels. In contrast, this study examines the broadcast operation, taking into account the scalability, parallelism, a wide range of traffic loads through the propagation of broadcast messages. To the best of our knowledge, this study is the first to consider the issue of broadcast latency at both the network and node levels across different traffic loads. Results are shown from a comparative analysis confirming that the coded-path based broadcast algorithms exhibit superior performance characteristics over some existing algorithms

    Quantum-based security in optical fibre networks

    Get PDF
    Electronic communication is used everyday for a number of different applications. Some of the information transferred during these communications can be private requiring encryption and authentication protocols to keep this information secure. Although there are protocols today which provide some security, they are not necessarily unconditionally secure. Quantum based protocols on the other hand, can provide unconditionally secure protocols for encryption and authentication. Prior to this Thesis, only one experimental realisation of quantum digital signatures had been demonstrated. This used a lossy photonic device along with a quantum memory allowing two parties to test whether they were sent the same signature by a single sender, and also store the quantum states for measurement later. This restricted the demonstration to distances of only a few metres, and was tested with a primitive approximation of a quantum memory rather than an actual one. This Thesis presents an experimental realisation of a quantum digital signature protocol which removes the reliance on quantum memory at the receivers, making a major step towards practicality. By removing the quantum memory, it was also possible to perform the swap and comparison mechanism in a more efficient manner resulting in an experimental realisation of quantum digital signatures over 2 kilometres of optical fibre. Quantum communication protocols can be unconditionally secure, however the transmission distance is limited by loss in quantum channels. To overcome this loss in conventional channels an optical amplifier is used, however the added noise from these would swamp the quantum signal if directly used in quantum communications. This Thesis looked into probabilistic quantum amplification, with an experimental realisation of the state comparison amplifier, based on linear optical components and single-photon detectors. The state comparison amplifier operated by using the wellestablished techniques of optical coherent state comparison and weak subtraction to post-select the output and provide non-deterministic amplification with increased fidelity at a high repetition rate. The success rates of this amplifier were found to be orders of magnitude greater than other state of the art quantum amplifiers, due to its lack of requirement for complex quantum resources, such as single or entangled photon sources, and photon number resolving detectors

    On the design of a high-performance adaptive router for CC-NUMA multiprocessors

    Get PDF
    Copyright © 2003 IEEEThis work presents the design and evaluation of an adaptive packet router aimed at supporting CC-NUMA traffic. We exploit a simple and efficient packet injection mechanism to avoid deadlock, which leads to a fully adaptive routing by employing only three virtual channels. In addition, we selectively use output buffers for implementing the most utilized virtual paths in order to reduce head-of-line blocking. The careful implementation of these features has resulted in a good trade off between network performance and hardware cost. The outcome of this research is a High-Performance Adaptive Router (HPAR), which adequately balances the needs of parallel applications: minimal network latency at low loads and high throughput at heavy loads. The paper includes an evaluation process in which HPAR is compared with other adaptive routers using FIFO input buffering, with or without additional virtual channels to reduce head-of-line blocking. This evaluation contemplates both the VLSI costs of each router and their performance under synthetic and real application workloads. To make the comparison fair, all the routers use the same efficient deadlock avoidance mechanism. In all the experiments, HPAR exhibited the best response among all the routers tested. The throughput gains ranged from 10 percent to 40 percent in respect to its most direct rival, which employs more hardware resources. Other results shown that HPAR achieves up to 83 percent of its theoretical maximum throughput under random traffic and up to 70 percent when running real applications. Moreover, the observed packet latencies were comparable to those exhibited by simpler routers. Therefore, HPAR can be considered as a suitable candidate to implement packet interchange in next generations of CC-NUMA multiprocessors.Valentín Puente, José-Ángel Gregorio, Ramón Beivide, and Cruz Iz

    Partial aggregation for collective communication in distributed memory machines

    Get PDF
    High Performance Computing (HPC) systems interconnect a large number of Processing Elements (PEs) in high-bandwidth networks to simulate complex scientific problems. The increasing scale of HPC systems poses great challenges on algorithm designers. As the average distance between PEs increases, data movement across hierarchical memory subsystems introduces high latency. Minimizing latency is particularly challenging in collective communications, where many PEs may interact in complex communication patterns. Although collective communications can be optimized for network-level parallelism, occasional synchronization delays due to dependencies in the communication pattern degrade application performance. To reduce the performance impact of communication and synchronization costs, parallel algorithms are designed with sophisticated latency hiding techniques. The principle is to interleave computation with asynchronous communication, which increases the overall occupancy of compute cores. However, collective communication primitives abstract parallelism which limits the integration of latency hiding techniques. Approaches to work around these limitations either modify the algorithmic structure of application codes, or replace collective primitives with verbose low-level communication calls. While these approaches give fine-grained control for latency hiding, implementing collective communication algorithms is challenging and requires expertise knowledge about HPC network topologies. A collective communication pattern is commonly described as a Directed Acyclic Graph (DAG) where a set of PEs, represented as vertices, resolve data dependencies through communication along the edges. Our approach improves latency hiding in collective communication through partial aggregation. Based on mathematical rules of binary operations and homomorphism, we expose data parallelism in a respective DAG to overlap computation with communication. The proposed concepts are implemented and evaluated with a subset of collective primitives in the Message Passing Interface (MPI), an established communication standard in scientific computing. An experimental analysis with communication-bound microbenchmarks shows considerable performance benefits for the evaluated collective primitives. A detailed case study with a large-scale distributed sort algorithm demonstrates, how partial aggregation significantly improves performance in data-intensive scenarios. Besides better latency hiding capabilities with collective communication primitives, our approach enables further optimizations of their implementations within MPI libraries. The vast amount of asynchronous programming models, which are actively studied in the HPC community, benefit from partial aggregation in collective communication patterns. Future work can utilize partial aggregation to improve the interaction of MPI collectives with acclerator architectures, and to design more efficient communication algorithms
    corecore