13,959 research outputs found

    Airline crew scheduling

    Get PDF
    An airline must cover each flight leg with a full complement of cabin crew in a manner consistent with safety regulations and award requirements. Methods are investigated for solving the set partitioning and covering problem. A test example illustrates the problem and the use of heuristics. The Study Group achieved an understanding of the problem and a plan for further work

    Rapid Sampling for Visualizations with Ordering Guarantees

    Get PDF
    Visualizations are frequently used as a means to understand trends and gather insights from datasets, but often take a long time to generate. In this paper, we focus on the problem of rapidly generating approximate visualizations while preserving crucial visual proper- ties of interest to analysts. Our primary focus will be on sampling algorithms that preserve the visual property of ordering; our techniques will also apply to some other visual properties. For instance, our algorithms can be used to generate an approximate visualization of a bar chart very rapidly, where the comparisons between any two bars are correct. We formally show that our sampling algorithms are generally applicable and provably optimal in theory, in that they do not take more samples than necessary to generate the visualizations with ordering guarantees. They also work well in practice, correctly ordering output groups while taking orders of magnitude fewer samples and much less time than conventional sampling schemes.Comment: Tech Report. 17 pages. Condensed version to appear in VLDB Vol. 8 No.

    An Incentive Compatible, Efficient Market for Air Traffic Flow Management

    Full text link
    We present a market-based approach to the Air Traffic Flow Management (ATFM) problem. The goods in our market are delays and buyers are airline companies; the latter pay money to the FAA to buy away the desired amount of delay on a per flight basis. We give a notion of equilibrium for this market and an LP whose solution gives an equilibrium allocation of flights to landing slots as well as equilibrium prices for the landing slots. Via a reduction to matching, we show that this equilibrium can be computed combinatorially in strongly polynomial time. Moreover, there is a special set of equilibrium prices, which can be computed easily, that is identical to the VCG solution, and therefore the market is incentive compatible in dominant strategy.Comment: arXiv admin note: substantial text overlap with arXiv:1109.521

    Link Prediction in Complex Networks: A Survey

    Full text link
    Link prediction in complex networks has attracted increasing attention from both physical and computer science communities. The algorithms can be used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. This article summaries recent progress about link prediction algorithms, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods. We also introduce three typical applications: reconstruction of networks, evaluation of network evolving mechanism and classification of partially labelled networks. Finally, we introduce some applications and outline future challenges of link prediction algorithms.Comment: 44 pages, 5 figure

    Development of heuristic procedures for flight rescheduling in the aftermath of irregular airline operations

    Get PDF
    Includes bibliographical references (p. [151]-158)Airlines are constantly faced with operational problems which develop from severe weather patterns and unexpected aircraft or personnel failures. However, very little research has been done on the problem of addressing the impact of irregular operations, and developing potential decision systems which could aid in aircraft re-scheduling. The primary goal of this research project has been to develop and validate algorithms, procedures and new methodologies to be used to reschedule planned activities (flights) in the event of irregular operations in large scale scheduled transportation systems, such as airline networks. A mathematical formulation of the Airline Schedule Recovery Problem is given, along with a decision framework which is used to develop efficient solution methodologies. These heuristic procedures and algorithms have been developed for potential use in a comprehensive real-time decision support systems (DSS), incorporating several aspects of the tactical operations of the transport system. These include yield management, vehicle routing, maintenance scheduling, and crew scheduling. The heuristic procedures developed will enable the carrier to recover from an irregular operation and maintain an efficient schedule for the remainder of a given resolution horizon. The algorithms are validated using real-world operational data from a major US domestic carrier, and data from an international carrier based in the Asia Pacific region. A comprehensive case study was conducted on historical operational data to compare the output of the algorithms to what actually occurred at the airline operation control center in the aftermath of an irregularity. Some of the issues considered include the percentage of flights delayed, percentage of flights cancelled, and the overall loss in operating revenue. From these analyses, it was possible to assess the potential benefits of such algorithms on the operations of an airline
    • …
    corecore