134,728 research outputs found

    ERMO2 algorithm: an energy efficient mobility management in mobile cloud computing system for 5G heterogeneous networks

    Get PDF
    Recently, mobile devices are becoming the primary platforms for every user who always roam around and access the cloud computing applications. Mobile cloud computing (MCC) combines the both mobile and cloud computing, which provides optimal services to the mobile users. In next-generation mobile environments, mainly due to the huge number of mobile users in conjunction with the small cell size and their portable information‟s, the influence of mobility on the network performance is strengthened. In this paper, we propose an energy efficient mobility management in mobile cloud computing (E2M2MC2) system for 5G heterogeneous networks. The proposed E2M2MC2 system use elective repeat multi-objective optimization (ERMO2) algorithm to determine the best clouds based on the selection metrics are delay, jitter, bit error rate (BER), packet loss, communication cost, response time, and network load. ERMO2 algorithm provides energy efficient management of user mobility as well as network resources. The simulation results shows that the proposed E2M2MC2 system helps in minimizing delay, packet loss rate and energy consumption in a heterogeneous network

    Dynamic Load Balancing By Scheduling In Computational Grid System

    Get PDF
    Grid computing systems are distributed systems that involve coordinate and involvement of heterogeneous resources with various characteristics where user jobs can be executed on either local or remote computer. These heterogeneous computing resources are used to run highly complex programs that require very high processing power and huge volume of input data. Recently the biggest issue in distributed system is to design of an appropriate and efficient dynamic load balancing algorithm that upgrade the overall performance of the distributed systems. In this research paper, we proposed a scheduling algorithm that manages the resources to improve the utilization of resource and minimize the job response time in computational grid system. So that no any resources will be heavily, low loaded or in some case will be in idle. Keywords— Grid computation, Dynamic Load balancing, Schedule DLB, Job Scheduling

    An Efficient Firefly Algorithm for Optimizing Task Scheduling in Cloud Computing Systems

    Get PDF
    As user service demands change constantly, task scheduling becomes an extremely significant study area within the cloud environment. The goal of scheduling is distributing the tasks on available processors in order to achieve the shortest possible makespan while adhering to priority constraints. In heterogeneous cloud computing resources, task scheduling has a large influence on system performances. The various processes in the heuristic-based algorithm of scheduling will result in varied makespans when heterogeneous resources are utilized. As a result, a smart method of scheduling must be capable of establishing precedence efficacy for each task to decrease makespan time. In our study, we develop a novel efficient method of scheduling tasks according to the firefly algorithm to tackle an essential task and schedule a heterogeneous cloud computing problem. We evaluate the performance of our algorithm by putting it through three situations with changing amounts of processors and numbers of tasks. The findings of the experiment reveal that our suggested technique found optimal solutions substantially more frequently in terms of makespan time when compared with other methods

    Hybrid Workload Enabled and Secure Healthcare Monitoring Sensing Framework in Distributed Fog-Cloud Network

    Get PDF
    The Internet of Medical Things (IoMT) workflow applications have been rapidly growing in practice. These internet-based applications can run on the distributed healthcare sensing system, which combines mobile computing, edge computing and cloud computing. Offloading and scheduling are the required methods in the distributed network. However, a security issue exists and it is hard to run different types of tasks (e.g., security, delay-sensitive, and delay-tolerant tasks) of IoMT applications on heterogeneous computing nodes. This work proposes a new healthcare architecture for workflow applications based on heterogeneous computing nodes layers: an application layer, management layer, and resource layer. The goal is to minimize the makespan of all applications. Based on these layers, the work proposes a secure offloading-efficient task scheduling (SEOS) algorithm framework, which includes the deadline division method, task sequencing rules, homomorphic security scheme, initial scheduling, and the variable neighbourhood searching method. The performance evaluation results show that the proposed plans outperform all existing baseline approaches for healthcare applications in terms of makespan

    Demand-driven Gaussian window optimization for executing preferred population of jobs in cloud clusters

    Get PDF
    Scheduling is one of the essential enabling technique for Cloud computing which facilitates efficient resource utilization among the jobs scheduled for processing. However, it experiences performance overheads due to the inappropriate provisioning of resources to requesting jobs. It is very much essential that the performance of Cloud is accomplished through intelligent scheduling and allocation of resources. In this paper, we propose the application of Gaussian window where jobs of heterogeneous in nature are scheduled in the round-robin fashion on different Cloud clusters. The clusters are heterogeneous in nature having datacenters with varying sever capacity. Performance evaluation results show that the proposed algorithm has enhanced the QoS of the computing model. Allocation of Jobs to specific Clusters has improved the system throughput and has reduced the latency

    Simulation model of load balancing in distributed computing systems

    Get PDF
    The availability of high-performance computing, high speed data transfer over the network and widespread of software for the design and pre-production in mechanical engineering have led to the fact that at the present time the large industrial enterprises and small engineering companies implement complex computer systems for efficient solutions of production and management tasks. Such computer systems are generally built on the basis of distributed heterogeneous computer systems. The analytical problems solved by such systems are the key models of research, but the system-wide problems of efficient distribution (balancing) of the computational load and accommodation input, intermediate and output databases are no less important. The main tasks of this balancing system are load and condition monitoring of compute nodes, and the selection of a node for transition of the user's request in accordance with a predetermined algorithm. The load balancing is one of the most used methods of increasing productivity of distributed computing systems through the optimal allocation of tasks between the computer system nodes. Therefore, the development of methods and algorithms for computing optimal scheduling in a distributed system, dynamically changing its infrastructure, is an important task

    SCALABLE INTEGRATED CIRCUIT SIMULATION ALGORITHMS FOR ENERGY-EFFICIENT TERAFLOP HETEROGENEOUS PARALLEL COMPUTING PLATFORMS

    Get PDF
    Integrated circuit technology has gone through several decades of aggressive scaling.It is increasingly challenging to analyze growing design complexity. Post-layout SPICE simulation can be computationally prohibitive due to the huge amount of parasitic elements, which can easily boost the computation and memory cost. As the decrease in device size, the circuits become more vulnerable to process variations. Designers need to statistically simulate the probability that a circuit does not meet the performance metric, which requires millions times of simulations to capture rare failure events. Recent, multiprocessors with heterogeneous architecture have emerged as mainstream computing platforms. The heterogeneous computing platform can achieve highthroughput energy efficient computing. However, the application of such platform is not trivial and needs to reinvent existing algorithms to fully utilize the computing resources. This dissertation presents several new algorithms to address those aforementioned two significant and challenging issues on the heterogeneous platform. Harmonic Balance (HB) analysis is essential for efficient verification of large postlayout RF and microwave integrated circuits (ICs). However, existing methods either suffer from excessively long simulation time and prohibitively large memory consumption or exhibit poor stability. This dissertation introduces a novel transient-simulation guided graph sparsification technique, as well as an efficient runtime performance modeling approach tailored for heterogeneous manycore CPU-GPU computing system to build nearly-optimal subgraph preconditioners that can lead to minimum HB simulation runtime. Additionally, we propose a novel heterogeneous parallel sparse block matrix algorithm by taking advantages of the structure of HB Jacobian matrices as well as GPU’s streaming multiprocessors to achieve optimal workload balancing during the preconditioning phase of HB analysis. We also show how the proposed preconditioned iterative algorithm can efficiently adapt to heterogeneous computing systems with different CPU and GPU computing capabilities. Extensive experimental results show that our HB solver can achieve up to 20X speedups and 5X memory reduction when compared with the state-of-the-art direct solver highly optimized for twelve-core CPUs. In nowadays variation-aware IC designs, cell characterizations and SRAM memory yield analysis require many thousands or even millions of repeated SPICE simulations for relatively small nonlinear circuits. In this dissertation, for the first time, we present a massively parallel SPICE simulator on GPU, TinySPICE, for efficiently analyzing small nonlinear circuits. TinySPICE integrates a highly-optimized shared-memory based matrix solver and fast parametric three-dimensional (3D) LUTs based device evaluation method. A novel circuit clustering method is also proposed to improve the stability and efficiency of the matrix solver. Compared with CPU-based SPICE simulator, TinySPICE achieves up to 264X speedups for parametric SRAM yield analysis without loss of accuracy

    3E: Energy-Efficient Elastic Scheduling for Independent Tasks in Heterogeneous Computing Systems

    Get PDF
    Reducing energy consumption is a major design constraint for modern heterogeneous computing systems to minimize electricity cost, improve system reliability and protect environment. Conventional energy-efficient scheduling strategies developed on these systems do not sufficiently exploit the system elasticity and adaptability for maximum energy savings, and do not simultaneously take account of user expected finish time. In this paper, we develop a novel scheduling strategy named energy-efficient elastic (3E) scheduling for aperiodic, independent and non-real-time tasks with user expected finish times on DVFS-enabled heterogeneous computing systems. The 3E strategy adjusts processors’ supply voltages and frequencies according to the system workload, and makes trade-offs between energy consumption and user expected finish times. Compared with other energy-efficient strategies, 3E significantly improves the scheduling quality and effectively enhances the system elasticity
    corecore