847 research outputs found

    An Efficient Routing Implementation for Irregular Networks

    Get PDF
    with the recent advancements in multi-core era workstation clusters have emerged as a cost-effective approach to build a network of workstations NOWs NOWs connect the small groups of processors to a network of switching elements that form irregular topologies Designing an efficient routing and a deadlock avoidance algorithm for irregular networks is quite complicated in terms of latency and area of the routing tables thus impractical for scalability of On Chip Networks Many deadlock free routing mechanisms have been proposed for regular networks but they cannot be employed in irregular networks In this paper a new methodology has been proposed for efficient routing scheme called LBDR-UD which save the average 64 59 routing tables in the switch for irregular networks as compare to up down routing The Basic concept of routing scheme is combination of up down and Logic Based Distributed Routing By simulation it has been shown that the LBDR-UD is deadlock free and adaptive to all dynamic network traffic condition

    Energy Efficient Branch and Bound based On-Chip Irregular Network Design

    Get PDF
    Here we present a technique which construct the topology for heterogeneous SoC, (Application Specific NoC) such that total Dynamic communication energy is optimized. The topology is certain to satisfy the constraints of node degree as well the link length. We first layout the topology by finding the shortest path between traffic characteristics with the branch and bound optimization technique. Deadlock is dealt with escape routing using Spanning tree. Investigation outcome show that the proposed design methodology is fast and achieves significant dynamic energy gain

    Adaptive turn-prohibition routing algorithm for the networks of workstations

    Get PDF
    Deadlock occurrence is a critical problem for any computer network. Various solutions have been proposed over last two decades to solve problem of deadlocks in networks using different routing schemes, like up/down routing algorithm used in Myrinet switches. However, most of existing approaches for deadlock-free routing either try to eliminate any possibility of deadlock occurrence, which can result in putting extra restrictions on the routing in the networks or put no restrictions on routing, which leads to other approach namely deadlock recovery. In this thesis emphasis is on developing hybrid approach for routing in wormhole networks, wherein some prohibition is imposed on routing along with some kind of deadlock recovery. This adaptive approach allows changing the amount of routing restrictions depending on network traffic, thus providing a flexible method to achieve better network performance compared to the existing techniques. The main idea of the proposed method consists in the sequential selections of some turns, which are prohibited to be selected during routing. After each additional turn is added, the probability of deadlock occurrence decreases gradually. Cost formula is proposed to estimate cost of implementing both strategies in a network which is basis of proposed adaptive model

    Energy Efficient Network Generation for Application Specific NoC

    Get PDF
    Networks-on-Chip is emerging as a communication platform for future complex SoC designs, composed of a large number of homogenous or heterogeneous processing resources. Most SoC platforms are customized to the domainspecific requirements of their applications, which communicate in a specific, mostly irregular way. The specific but often diverse communication requirements among cores of the SoC call for the design of application-specific network of SoC for improved performance in terms of communication energy, latency, and throughput. In this work, we propose a methodology for the design of customized irregular network architecture of SoC. The proposed method exploits priori knowledge of the application2019;s communication characteristic to generate an energy optimized network and corresponding routing tables

    NC-G-SIM: A Parameterized Generic Simulator for 2D-Mesh, 3D-Mesh

    Get PDF
    As chip density keeps doubling during each course of generation, the use of NoC has become an integral part of modern microprocessors and a very prevalent architectural feature of all types of SoCs. To meet the ever expanding communication challenges, diverse and novel NoC solutions are being developed which rely on accurate modeling and simulations to evaluate the impact and analyze their performances. Consequently, this aggravates the need to rely on simulation tools to probe and optimize these NoC architectures. In this work, we present NC-G-SIM (Network on Chip-Generic-SIMulator), a highly flexible, modular, cycle-accurate, configurable simulator for NoCs. To make NC-G-SIM suitable for advanced NoC exploration, it is made highly generic that supports extensive range of cores in any kind of topology whether 2D, 3D or irregular. Simulation results have been evaluated in terms of latencies, throughput and the amount of energy consumed during the simulation period at different levels

    An Efficient Implementation of Distributed Routing Algorithms for NoCs

    Full text link
    The design of NoCs for multi-core chips introduces new design constraints like power consumption, area, and ul-tra low latencies. Although 2D meshes are preferred, het-erogeneous blocks, fabrication faults, reliability issues, and chip virtualization may lead to the need of irregular topolo-gies or regions. In this situation, efficient routing becomes a challenge. Although the use of routing tables at switches is flexible, it does not scale in terms of latency and area due to its memory requirements. LBDR (Logic-Based Distributed Routing) is proposed as a new routing method that removes the need of using rout-ing tables at all. LBDR enables the implementation of many routing algorithms on most of the practical topologies we might find in the near future in a multi-core system. From an initial topology and routing algorithm, a set of three bits per switch/output port is computed. Evaluation results show that, by using a small logic, LBDR mimics the performance of routing algorithms when implemented with routing ta-bles, both in regular and irregular topologies.
    • …
    corecore