126 research outputs found

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    DĂ©jĂ  Q all over again: Tighter and broader reductions of q-type assumptions

    Get PDF
    In this paper, we demonstrate that various cryptographic constructions—including ones for broadcast, attribute-based, and hierarchical identity-based encryption—can rely for security on only the static subgroup hiding assumption when instantiated in composite-order bilinear groups, as opposed to the dynamic q-type assumptions on which their security previously was based. This specific goal is accomplished by more generally extending the recent Déjà Q framework (Chase and Meiklejohn, Eurocrypt 2014) in two main directions. First, by teasing out common properties of existing reductions, we expand the q-type assumptions that can be covered by the framework; i.e., we demonstrate broader classes of assumptions that can be reduced to subgroup hiding. Second, while the original framework applied only to asymmetric composite-order bilinear groups, we provide a reduction to subgroup hiding that works in symmetric (as well as asymmetric) composite-order groups. As a bonus, our new reduction achieves a tightness of log(q) rather than q

    Deja Q All Over Again: Tighter and Broader Reductions of q-Type Assumptions

    Get PDF
    In this paper, we demonstrate that various cryptographic constructions--including ones for broadcast, attribute-based, and hierarchical identity-based encryption--can rely for security on only the static subgroup hiding assumption when instantiated in composite-order bilinear groups, as opposed to the dynamic q-type assumptions on which their security previously was based. This specific goal is accomplished by more generally extending the recent Deja Q framework (Chase and Meiklejohn, Eurocrypt 2014) in two main directions. First, by teasing out common properties of existing reductions, we expand the q-type assumptions that can be covered by the framework; i.e., we demonstrate broader classes of assumptions that can be reduced to subgroup hiding. Second, while the original framework applied only to asymmetric composite-order bilinear groups, we provide a reduction to subgroup hiding that works in symmetric (as well as asymmetric) composite-order groups. As a bonus, our new reduction achieves a tightness of log(q) rather than q

    Improved Inner-product Encryption with Adaptive Security and Full Attribute-hiding

    Get PDF
    In this work, we propose two IPE schemes achieving both adaptive security and full attribute-hiding in the prime-order bilinear group, which improve upon the unique existing result satisfying both features from Okamoto and Takashima [Eurocrypt \u2712] in terms of efficiency. - Our first IPE scheme is based on the standard kk-Lin assumption and has shorter master public key and shorter secret keys than Okamoto and Takashima\u27s IPE under weaker DLIN=22-lin assumption. - Our second IPE scheme is adapted from the first one; the security is based on the XDLIN assumption (as Okamoto and Takashima\u27s IPE) but now it also enjoys shorter ciphertexts. Technically, instead of starting from composite-order IPE and applying existing transformation, we start from an IPE scheme in a very restricted setting but already in the prime-order group, and then gradually upgrade it to our full-fledged IPE scheme. This method allows us to integrate Chen et al.\u27s framework [Eurocrypt \u2715] with recent new techniques [TCC \u2717, Eurocrypt \u2718] in an optimized way

    Advances in Functional Encryption

    Get PDF
    Functional encryption is a novel paradigm for public-key encryption that enables both fine-grained access control and selective computation on encrypted data, as is necessary to protect big, complex data in the cloud. In this thesis, I provide a brief introduction to functional encryption, and an overview of my contributions to the area

    Extended Nested Dual System Groups, Revisited

    Get PDF
    The notion of extended nested dual system groups (ENDSG) was recently proposed by Hofheinz et al. [PKC 2015] for constructing almost-tight identity based encryptions (IBE) in the multi-instance, multi-ciphertext (MIMC) setting. However only a composite-order instantiation was proposed and more efficient prime-order instantiations are absent. The paper fills the blank by presenting two constructions. We revise the definition of ENDSG and realize it using prime-order bilinear groups based on Chen and Wee\u27s prime-order instantiation of nested dual system groups [CRYPTO 2013]. This yields the first almost-tight IBE in the prime-order setting achieving weak adaptive security in MIMC scenario under the dd-linear (dd-Lin) assumption. We further enhanced the revised ENDSG to capture stronger security notions for IBE, including BB-weak adaptive security and full adaptive security. We show that our prime-order instantiation is readily BB-weak adaptive secure and full adaptive secure without introducing extra assumption. We then try to find better solution by fine-tuning ENDSG again and realizing it using the technique of Chen, Gay, and Wee [EUROCRYPT 2015]. This leads to an almost-tight secure IBE in the same setting with better performance than our first result, but the security relies on a non-standard assumption, dd-linear assumption with auxiliary input (dd-LinAI) for an even positive integer dd. However we note that, the 22-LinAI assumption is implied by the external decisional linear (XDLIN) assumption. This concrete instantiation could also be realized using symmetric bilinear groups under standard decisional linear assumption

    A Framework for Identity-Based Encryption with Almost Tight Security

    Get PDF
    We show a framework for constructing identity-based encryption (IBE) schemes that are (almost) tightly secure in the multi-challenge and multi-instance setting. In particular, we formalize a new notion called broadcast encoding, analogously to encoding notions by Attrapadung (Eurocrypt \u2714) and Wee (TCC \u2714). We then show that it can be converted into such an IBE. By instantiating the framework using several encoding schemes (new or known ones), we obtain the following: - We obtain (almost) tightly secure IBE in the multi-challenge, multi-instance setting, both in composite and prime-order groups. The latter resolves the open problem posed by Hofheinz et al (PKC \u2715). - We obtain the first (almost) tightly secure IBE with sub-linear size public parameters (master public keys). In particular, we can set the size of the public parameters to constant at the cost of longer ciphertexts. This gives a partial solution to the open problem posed by Chen and Wee (Crypto \u2713). By applying (a variant of) the Canetti-Halevi-Katz transformation to our schemes, we obtain several CCA-secure PKE schemes with tight security in the multi-challenge, multi-instance setting. One of our schemes achieves very small ciphertext overhead, consisting of less than 12 group elements. This significantly improves the state-of-the-art construction by Libert et al.~(in ePrint Archive) which requires 47 group elements. Furthermore, by modifying one of our IBE schemes obtained above, we can make it anonymous. This gives the first anonymous IBE whose security is almost tightly shown in the multi-challenge setting

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too ine cient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/e ciency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings

    On Improving Communication Complexity in Cryptography

    Get PDF
    Cryptography grew to be much more than "the study of secret writing". Modern cryptography is concerned with establishing properties such as privacy, integrity and authenticity in protocols for secure communication and computation. This comes at a price: Cryptographic tools usually introduce an overhead, both in terms of communication complexity (that is, number and size of messages transmitted) and computational efficiency (that is, time and memory required). As in many settings communication between the parties involved is the bottleneck, this thesis is concerned with improving communication complexity in cryptographic protocols. One direction towards this goal is scalable cryptography: In many cryptographic schemes currently deployed, the security degrades linearly with the number of instances (e.g. encrypted messages) in the system. As this number can be huge in contexts like cloud computing, the parameters of the scheme have to be chosen considerably larger - and in particular depending on the expected number of instances in the system - to maintain security guarantees. We advance the state-of-the-art regarding scalable cryptography by constructing schemes where the security guarantees are independent of the number of instances. This allows to choose smaller parameters, even when the expected number of instances is immense. - We construct the first scalable encryption scheme with security against active adversaries which has both compact public keys and ciphertexts. In particular, we significantly reduce the size of the public key to only about 3% of the key-size of the previously most efficient scalable encryption scheme. (Gay,Hofheinz, and Kohl, CRYPTO, 2017) - We present a scalable structure-preserving signature scheme which improves both in terms of public-key and signature size compared to the previously best construction to about 40% and 56% of the sizes, respectively. (Gay, Hofheinz, Kohl, and Pan, EUROCRYPT, 2018) Another important area of cryptography is secure multi-party computation, where the goal is to jointly evaluate some function while keeping each party’s input private. In traditional approaches towards secure multi-party computation either the communication complexity scales linearly in the size of the function, or the computational efficiency is poor. To overcome this issue, Boyle, Gilboa, and Ishai (CRYPTO, 2016) introduced the notion of homomorphic secret sharing. Here, inputs are shared between parties such that each party does not learn anything about the input, and such that the parties can locally evaluate functions on the shares. Homomorphic secret sharing implies secure computation where the communication complexity only depends on the size of the inputs, which is typically much smaller than the size of the function. A different approach towards efficient secure computation is to split the protocol into an input-independent preprocessing phase, where long correlated strings are generated, and a very efficient online phase. One example for a useful correlation are authenticated Beaver triples, which allow to perform efficient multiplications in the online phase such that privacy of the inputs is preserved and parties deviating the protocol can be detected. The currently most efficient protocols implementing the preprocessing phase require communication linear in the number of triples to be generated. This results typically in high communication costs, as the online phase requires at least one authenticated Beaver triple per multiplication. We advance the state-of-the art regarding efficient protocols for secure computation with low communication complexity as follows. - We construct the first homomorphic secret sharing scheme for computing arbitrary functions in NC 1 (that is, functions that are computably by circuits with logarithmic depth) which supports message spaces of arbitrary size, has only negligible correctness error, and does not require expensive multiplication on ciphertexts. (Boyle, Kohl, and Scholl, EUROCRYPT, 2019) - We introduce the notion of a pseudorandom correlation generator for general correlations. Pseudorandom correlation generators allow to locally extend short correlated seeds into long pseudorandom correlated strings. We show that pseudorandom correlation generators can replace the preprocessing phase in many protocols, leading to a preprocessing phase with sublinear communication complexity. We show connections to homomorphic secret sharing schemes and give the first instantiation of pseudorandom correlation generators for authenticated Beaver triples at reasonable computational efficiency. (Boyle, Couteau, Gilboa, Ishai, Kohl, and Scholl, CRYPTO, 2019

    Almost-tight Identity Based Encryption against Selective Opening Attack

    Get PDF
    The paper presented an identity based encryption (IBE) under selective opening attack (SOA) whose security is almost-tightly related to a set of computational assumptions. Our result is a combination of Bellare, Waters, and Yilek\u27s method [TCC, 2011] for constructing (not tightly) SOA secure IBE and Hofheinz, Koch, and Striecks\u27 technique [PKC, 2015] on building almost-tightly secure IBE in the multi-ciphertext setting. In particular, we first tuned Bellare et al.\u27s generic construction for SOA secure IBE to show that a one-bit IBE achieving ciphertext indistinguishability under chosen plaintext attack in the multi-ciphertext setting (with one-sided publicly openability) tightly implies a multi-bit IBE secure under selective opening attack. Next, we almost-tightly reduced such a one-bit IBE to static assumptions in the composite-order bilinear groups employing the technique of Hofheinz et al. This yielded the first SOA secure IBE with almost-tight reduction
    • …
    corecore