92 research outputs found

    PRECONDITIONERS AND TENSOR PRODUCT SOLVERS FOR OPTIMAL CONTROL PROBLEMS FROM CHEMOTAXIS

    Get PDF
    In this paper, we consider the fast numerical solution of an optimal control formulation of the Keller--Segel model for bacterial chemotaxis. Upon discretization, this problem requires the solution of huge-scale saddle point systems to guarantee accurate solutions. We consider the derivation of effective preconditioners for these matrix systems, which may be embedded within suitable iterative methods to accelerate their convergence. We also construct low-rank tensor-train techniques which enable us to present efficient and feasible algorithms for problems that are finely discretized in the space and time variables. Numerical results demonstrate that the number of preconditioned GMRES iterations depends mildly on the model parameters. Moreover, the low-rank solver makes the computing time and memory costs sublinear in the original problem size.Comment: 23 page

    pde2path - A Matlab package for continuation and bifurcation in 2D elliptic systems

    Full text link
    pde2path is a free and easy to use Matlab continuation/bifurcation package for elliptic systems of PDEs with arbitrary many components, on general two dimensional domains, and with rather general boundary conditions. The package is based on the FEM of the Matlab pdetoolbox, and is explained by a number of examples, including Bratu's problem, the Schnakenberg model, Rayleigh-Benard convection, and von Karman plate equations. These serve as templates to study new problems, for which the user has to provide, via Matlab function files, a description of the geometry, the boundary conditions, the coefficients of the PDE, and a rough initial guess of a solution. The basic algorithm is a one parameter arclength continuation with optional bifurcation detection and branch-switching. Stability calculations, error control and mesh-handling, and some elementary time-integration for the associated parabolic problem are also supported. The continuation, branch-switching, plotting etc are performed via Matlab command-line function calls guided by the AUTO style. The software can be downloaded from www.staff.uni-oldenburg.de/hannes.uecker/pde2path, where also an online documentation of the software is provided such that in this paper we focus more on the mathematics and the example systems

    Analysis of the discontinuous Galerkin method for elliptic problems on surfaces

    Get PDF
    We extend the discontinuous Galerkin (DG) framework to a linear second-order elliptic problem on a compact smooth connected and oriented surface. An interior penalty (IP) method is introduced on a discrete surface and we derive a-priori error estimates by relating the latter to the original surface via the lift introduced in Dziuk (1988). The estimates suggest that the geometric error terms arising from the surface discretisation do not affect the overall convergence rate of the IP method when using linear ansatz functions. This is then verified numerically for a number of test problems. An intricate issue is the approximation of the surface conormal required in the IP formulation, choices of which are investigated numerically. Furthermore, we present a generic implementation of test problems on surfaces.Comment: 21 pages, 4 figures. IMA Journal of Numerical Analysis 2013, Link to publication: http://imajna.oxfordjournals.org/cgi/content/abstract/drs033? ijkey=45b23qZl5oJslZQ&keytype=re

    Proceedings of the Eleventh UK Conference on Boundary Integral Methods (UKBIM 11), 10-11 July 2017, Nottingham Conference Centre, Nottingham Trent University

    Get PDF
    This book contains the abstracts and papers presented at the Eleventh UK Conference on Boundary Integral Methods (UKBIM 11), held at Nottingham Trent University in July 2017. The work presented at the conference, and published in this volume, demonstrates the wide range of work that is being carried out in the UK, as well as from further afield

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers
    • ā€¦
    corecore