1,537 research outputs found

    Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms

    Full text link
    The paper studies machine learning problems where each example is described using a set of Boolean features and where hypotheses are represented by linear threshold elements. One method of increasing the expressiveness of learned hypotheses in this context is to expand the feature set to include conjunctions of basic features. This can be done explicitly or where possible by using a kernel function. Focusing on the well known Perceptron and Winnow algorithms, the paper demonstrates a tradeoff between the computational efficiency with which the algorithm can be run over the expanded feature space and the generalization ability of the corresponding learning algorithm. We first describe several kernel functions which capture either limited forms of conjunctions or all conjunctions. We show that these kernels can be used to efficiently run the Perceptron algorithm over a feature space of exponentially many conjunctions; however we also show that using such kernels, the Perceptron algorithm can provably make an exponential number of mistakes even when learning simple functions. We then consider the question of whether kernel functions can analogously be used to run the multiplicative-update Winnow algorithm over an expanded feature space of exponentially many conjunctions. Known upper bounds imply that the Winnow algorithm can learn Disjunctive Normal Form (DNF) formulae with a polynomial mistake bound in this setting. However, we prove that it is computationally hard to simulate Winnows behavior for learning DNF over such a feature set. This implies that the kernel functions which correspond to running Winnow for this problem are not efficiently computable, and that there is no general construction that can run Winnow with kernels

    A novel Boolean kernels family for categorical data

    Get PDF
    Kernel based classifiers, such as SVM, are considered state-of-the-art algorithms and are widely used on many classification tasks. However, this kind of methods are hardly interpretable and for this reason they are often considered as black-box models. In this paper, we propose a new family of Boolean kernels for categorical data where features correspond to propositional formulas applied to the input variables. The idea is to create human-readable features to ease the extraction of interpretation rules directly from the embedding space. Experiments on artificial and benchmark datasets show the effectiveness of the proposed family of kernels with respect to established ones, such as RBF, in terms of classification accuracy

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Times series averaging from a probabilistic interpretation of time-elastic kernel

    Get PDF
    At the light of regularized dynamic time warping kernels, this paper reconsider the concept of time elastic centroid (TEC) for a set of time series. From this perspective, we show first how TEC can easily be addressed as a preimage problem. Unfortunately this preimage problem is ill-posed, may suffer from over-fitting especially for long time series and getting a sub-optimal solution involves heavy computational costs. We then derive two new algorithms based on a probabilistic interpretation of kernel alignment matrices that expresses in terms of probabilistic distributions over sets of alignment paths. The first algorithm is an iterative agglomerative heuristics inspired from the state of the art DTW barycenter averaging (DBA) algorithm proposed specifically for the Dynamic Time Warping measure. The second proposed algorithm achieves a classical averaging of the aligned samples but also implements an averaging of the time of occurrences of the aligned samples. It exploits a straightforward progressive agglomerative heuristics. An experimentation that compares for 45 time series datasets classification error rates obtained by first near neighbors classifiers exploiting a single medoid or centroid estimate to represent each categories show that: i) centroids based approaches significantly outperform medoids based approaches, ii) on the considered experience, the two proposed algorithms outperform the state of the art DBA algorithm, and iii) the second proposed algorithm that implements an averaging jointly in the sample space and along the time axes emerges as the most significantly robust time elastic averaging heuristic with an interesting noise reduction capability. Index Terms-Time series averaging Time elastic kernel Dynamic Time Warping Time series clustering and classification

    Graph Kernels

    Get PDF
    We present a unified framework to study graph kernels, special cases of which include the random walk (Gärtner et al., 2003; Borgwardt et al., 2005) and marginalized (Kashima et al., 2003, 2004; Mahé et al., 2004) graph kernels. Through reduction to a Sylvester equation we improve the time complexity of kernel computation between unlabeled graphs with n vertices from O(n^6) to O(n^3). We find a spectral decomposition approach even more efficient when computing entire kernel matrices. For labeled graphs we develop conjugate gradient and fixed-point methods that take O(dn^3) time per iteration, where d is the size of the label set. By extending the necessary linear algebra to Reproducing Kernel Hilbert Spaces (RKHS) we obtain the same result for d-dimensional edge kernels, and O(n^4) in the infinite-dimensional case; on sparse graphs these algorithms only take O(n^2) time per iteration in all cases. Experiments on graphs from bioinformatics and other application domains show that these techniques can speed up computation of the kernel by an order of magnitude or more. We also show that certain rational kernels (Cortes et al., 2002, 2003, 2004) when specialized to graphs reduce to our random walk graph kernel. Finally, we relate our framework to R-convolution kernels (Haussler, 1999) and provide a kernel that is close to the optimal assignment kernel of Fröhlich et al. (2006) yet provably positive semi-definite
    corecore