9,745 research outputs found

    Effect of W, LR, and LM Tests on the Performance of Preliminary Test Ridge Regression Estimators

    Get PDF
    This paper combines the idea of preliminary test and ridge regression methodology, when it is suspected that the regression coefficients may be restricted to a subspace. The preliminary test ridge regression estimators (PTRRE) based on the Wald (W), Likelihood Ratio (LR) and Lagrangian Multiplier (LM) tests are considered. The bias and the mean square errors (MSE) of the proposed estimators are derived under both null and alternative hypotheses. By studying the MSE criterion, the regions of optimality of the estimators are determined. Under the null hypothesis, the PTRRE based on LM test has the smallest risk followed by the estimators based on LR and W tests. However, the PTRRE based on W test performs the best followed by the LR and LM based estimators when the parameter moves away from the subspace of the restrictions. The conditions of superiority of the proposed estimator for both ridge parameter k and departure parameter (triangle symbol) are provided. Some graphical representations have been presented which support the findings of the paper. Some tables for maximum and minimum guaranteed relative efficiency of the proposed estimators have been provided. These tables allow us to determine the optimum level of significance corresponding to the optimum estimators among proposed estimators. Finally, we concluded that the optimum choice of the level of significance becomes the traditional choice by using the W test for all non-negative ridge parameter, k.Dominance; Lagrangian Multiplier; Likelihood Ratio Test; MSE; Non-central Chisquare and F; Ridge Regression; Superiority; Wald Test.

    Semiparametric theory

    Full text link
    In this paper we give a brief review of semiparametric theory, using as a running example the common problem of estimating an average causal effect. Semiparametric models allow at least part of the data-generating process to be unspecified and unrestricted, and can often yield robust estimators that nonetheless behave similarly to those based on parametric likelihood assumptions, e.g., fast rates of convergence to normal limiting distributions. We discuss the basics of semiparametric theory, focusing on influence functions.Comment: arXiv admin note: text overlap with arXiv:1510.0474

    Algorithms for envelope estimation

    Full text link
    Envelopes were recently proposed as methods for reducing estimative variation in multivariate linear regression. Estimation of an envelope usually involves optimization over Grassmann manifolds. We propose a fast and widely applicable one-dimensional (1D) algorithm for estimating an envelope in general. We reveal an important structural property of envelopes that facilitates our algorithm, and we prove both Fisher consistency and root-n-consistency of the algorithm.Comment: 30 pages, 2 figures, 2 table

    Robust Orthogonal Complement Principal Component Analysis

    Full text link
    Recently, the robustification of principal component analysis has attracted lots of attention from statisticians, engineers and computer scientists. In this work we study the type of outliers that are not necessarily apparent in the original observation space but can seriously affect the principal subspace estimation. Based on a mathematical formulation of such transformed outliers, a novel robust orthogonal complement principal component analysis (ROC-PCA) is proposed. The framework combines the popular sparsity-enforcing and low rank regularization techniques to deal with row-wise outliers as well as element-wise outliers. A non-asymptotic oracle inequality guarantees the accuracy and high breakdown performance of ROC-PCA in finite samples. To tackle the computational challenges, an efficient algorithm is developed on the basis of Stiefel manifold optimization and iterative thresholding. Furthermore, a batch variant is proposed to significantly reduce the cost in ultra high dimensions. The paper also points out a pitfall of a common practice of SVD reduction in robust PCA. Experiments show the effectiveness and efficiency of ROC-PCA in both synthetic and real data

    Robust variable screening for regression using factor profiling

    Full text link
    Sure Independence Screening is a fast procedure for variable selection in ultra-high dimensional regression analysis. Unfortunately, its performance greatly deteriorates with increasing dependence among the predictors. To solve this issue, Factor Profiled Sure Independence Screening (FPSIS) models the correlation structure of the predictor variables, assuming that it can be represented by a few latent factors. The correlations can then be profiled out by projecting the data onto the orthogonal complement of the subspace spanned by these factors. However, neither of these methods can handle the presence of outliers in the data. Therefore, we propose a robust screening method which uses a least trimmed squares method to estimate the latent factors and the factor profiled variables. Variable screening is then performed on factor profiled variables by using regression MM-estimators. Different types of outliers in this model and their roles in variable screening are studied. Both simulation studies and a real data analysis show that the proposed robust procedure has good performance on clean data and outperforms the two nonrobust methods on contaminated data

    Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays

    Full text link
    Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an essential task in sonar, radar, acoustics, biomedical and multimedia applications. Many state of the art wide-band DOA estimators coherently process frequency binned array outputs by approximate Maximum Likelihood, Weighted Subspace Fitting or focusing techniques. This paper shows that bin signals obtained by filter-bank approaches do not obey the finite rank narrow-band array model, because spectral leakage and the change of the array response with frequency within the bin create \emph{ghost sources} dependent on the particular realization of the source process. Therefore, existing DOA estimators based on binning cannot claim consistency even with the perfect knowledge of the array response. In this work, a more realistic array model with a finite length of the sensor impulse responses is assumed, which still has finite rank under a space-time formulation. It is shown that signal subspaces at arbitrary frequencies can be consistently recovered under mild conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant eigenvectors of the wide-band space-time sensor cross-correlation matrix. A novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order to recover consistency. The number of sources active at each frequency are estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can be fed to any subspace fitting DOA estimator at single or multiple frequencies. Simulations confirm that the new technique clearly outperforms binning approaches at sufficiently high signal to noise ratio, when model mismatches exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans. on Signal Processing on 12 February 1918. @IEEE201

    Semiparametric theory and empirical processes in causal inference

    Full text link
    In this paper we review important aspects of semiparametric theory and empirical processes that arise in causal inference problems. We begin with a brief introduction to the general problem of causal inference, and go on to discuss estimation and inference for causal effects under semiparametric models, which allow parts of the data-generating process to be unrestricted if they are not of particular interest (i.e., nuisance functions). These models are very useful in causal problems because the outcome process is often complex and difficult to model, and there may only be information available about the treatment process (at best). Semiparametric theory gives a framework for benchmarking efficiency and constructing estimators in such settings. In the second part of the paper we discuss empirical process theory, which provides powerful tools for understanding the asymptotic behavior of semiparametric estimators that depend on flexible nonparametric estimators of nuisance functions. These tools are crucial for incorporating machine learning and other modern methods into causal inference analyses. We conclude by examining related extensions and future directions for work in semiparametric causal inference
    • …
    corecore