10,617 research outputs found

    kk-MLE: A fast algorithm for learning statistical mixture models

    Full text link
    We describe kk-MLE, a fast and efficient local search algorithm for learning finite statistical mixtures of exponential families such as Gaussian mixture models. Mixture models are traditionally learned using the expectation-maximization (EM) soft clustering technique that monotonically increases the incomplete (expected complete) likelihood. Given prescribed mixture weights, the hard clustering kk-MLE algorithm iteratively assigns data to the most likely weighted component and update the component models using Maximum Likelihood Estimators (MLEs). Using the duality between exponential families and Bregman divergences, we prove that the local convergence of the complete likelihood of kk-MLE follows directly from the convergence of a dual additively weighted Bregman hard clustering. The inner loop of kk-MLE can be implemented using any kk-means heuristic like the celebrated Lloyd's batched or Hartigan's greedy swap updates. We then show how to update the mixture weights by minimizing a cross-entropy criterion that implies to update weights by taking the relative proportion of cluster points, and reiterate the mixture parameter update and mixture weight update processes until convergence. Hard EM is interpreted as a special case of kk-MLE when both the component update and the weight update are performed successively in the inner loop. To initialize kk-MLE, we propose kk-MLE++, a careful initialization of kk-MLE guaranteeing probabilistically a global bound on the best possible complete likelihood.Comment: 31 pages, Extend preliminary paper presented at IEEE ICASSP 201

    Accelerating Parallel Tempering: Quantile Tempering Algorithm (QuanTA)

    Get PDF
    Using MCMC to sample from a target distribution, π(x)\pi(x) on a dd-dimensional state space can be a difficult and computationally expensive problem. Particularly when the target exhibits multimodality, then the traditional methods can fail to explore the entire state space and this results in a bias sample output. Methods to overcome this issue include the parallel tempering algorithm which utilises an augmented state space approach to help the Markov chain traverse regions of low probability density and reach other modes. This method suffers from the curse of dimensionality which dramatically slows the transfer of mixing information from the auxiliary targets to the target of interest as d→∞d \rightarrow \infty. This paper introduces a novel prototype algorithm, QuanTA, that uses a Gaussian motivated transformation in an attempt to accelerate the mixing through the temperature schedule of a parallel tempering algorithm. This new algorithm is accompanied by a comprehensive theoretical analysis quantifying the improved efficiency and scalability of the approach; concluding that under weak regularity conditions the new approach gives accelerated mixing through the temperature schedule. Empirical evidence of the effectiveness of this new algorithm is illustrated on canonical examples

    Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms

    Full text link
    Clustering non-Euclidean data is difficult, and one of the most used algorithms besides hierarchical clustering is the popular algorithm Partitioning Around Medoids (PAM), also simply referred to as k-medoids. In Euclidean geometry the mean-as used in k-means-is a good estimator for the cluster center, but this does not hold for arbitrary dissimilarities. PAM uses the medoid instead, the object with the smallest dissimilarity to all others in the cluster. This notion of centrality can be used with any (dis-)similarity, and thus is of high relevance to many domains such as biology that require the use of Jaccard, Gower, or more complex distances. A key issue with PAM is its high run time cost. We propose modifications to the PAM algorithm to achieve an O(k)-fold speedup in the second SWAP phase of the algorithm, but will still find the same results as the original PAM algorithm. If we slightly relax the choice of swaps performed (at comparable quality), we can further accelerate the algorithm by performing up to k swaps in each iteration. With the substantially faster SWAP, we can now also explore alternative strategies for choosing the initial medoids. We also show how the CLARA and CLARANS algorithms benefit from these modifications. It can easily be combined with earlier approaches to use PAM and CLARA on big data (some of which use PAM as a subroutine, hence can immediately benefit from these improvements), where the performance with high k becomes increasingly important. In experiments on real data with k=100, we observed a 200-fold speedup compared to the original PAM SWAP algorithm, making PAM applicable to larger data sets as long as we can afford to compute a distance matrix, and in particular to higher k (at k=2, the new SWAP was only 1.5 times faster, as the speedup is expected to increase with k)

    Cluster validity in clustering methods

    Get PDF

    On the tradeoff between stability and fit

    Get PDF
    In computing, as in many aspects of life, changes incur cost. Many optimization problems are formulated as a one-time instance starting from scratch. However, a common case that arises is when we already have a set of prior assignments and must decide how to respond to a new set of constraints, given that each change from the current assignment comes at a price. That is, we would like to maximize the fitness or efficiency of our system, but we need to balance it with the changeout cost from the previous state. We provide a precise formulation for this tradeoff and analyze the resulting stable extensions of some fundamental problems in measurement and analytics. Our main technical contribution is a stable extension of Probability Proportional to Size (PPS) weighted random sampling, with applications to monitoring and anomaly detection problems. We also provide a general framework that applies to top-k, minimum spanning tree, and assignment. In both cases, we are able to provide exact solutions and discuss efficient incremental algorithms that can find new solutions as the input changes

    Towards an Efficient Discovery of the Topological Representative Subgraphs

    Full text link
    With the emergence of graph databases, the task of frequent subgraph discovery has been extensively addressed. Although the proposed approaches in the literature have made this task feasible, the number of discovered frequent subgraphs is still very high to be efficiently used in any further exploration. Feature selection for graph data is a way to reduce the high number of frequent subgraphs based on exact or approximate structural similarity. However, current structural similarity strategies are not efficient enough in many real-world applications, besides, the combinatorial nature of graphs makes it computationally very costly. In order to select a smaller yet structurally irredundant set of subgraphs, we propose a novel approach that mines the top-k topological representative subgraphs among the frequent ones. Our approach allows detecting hidden structural similarities that existing approaches are unable to detect such as the density or the diameter of the subgraph. In addition, it can be easily extended using any user defined structural or topological attributes depending on the sought properties. Empirical studies on real and synthetic graph datasets show that our approach is fast and scalable
    • …
    corecore