888 research outputs found

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Tradition and Innovation in Construction Project Management

    Get PDF
    This book is a reprint of the Special Issue 'Tradition and Innovation in Construction Project Management' that was published in the journal Buildings

    Digital agriculture: research, development and innovation in production chains.

    Get PDF
    Digital transformation in the field towards sustainable and smart agriculture. Digital agriculture: definitions and technologies. Agroenvironmental modeling and the digital transformation of agriculture. Geotechnologies in digital agriculture. Scientific computing in agriculture. Computer vision applied to agriculture. Technologies developed in precision agriculture. Information engineering: contributions to digital agriculture. DIPN: a dictionary of the internal proteins nanoenvironments and their potential for transformation into agricultural assets. Applications of bioinformatics in agriculture. Genomics applied to climate change: biotechnology for digital agriculture. Innovation ecosystem in agriculture: Embrapa?s evolution and contributions. The law related to the digitization of agriculture. Innovating communication in the age of digital agriculture. Driving forces for Brazilian agriculture in the next decade: implications for digital agriculture. Challenges, trends and opportunities in digital agriculture in Brazil

    Technologies for digital twin applications in construction

    Get PDF
    The construction industry is facing enormous pressure to adopt digital solutions to solve the industry's inherent problems. The digital twin has emerged as a solution that can update a BIM model with real-time data to achieve cyber-physical integration, enabling real-time monitoring of assets and activities and improving decision-making. The application of digital twins in the construction industry is still in its nascent stages but has been steadily growing over the past few years. A wide variety of emerging technologies are being used in the development of digital twins in diverse applications in construction but it is not immediately clear from the literature which ones are key to the successful development of digital twins, necessitating a systematic literature review with a focus on technologies. This paper aims to identify the key technologies used in the development of digital twins in construction in the existing literature, the research gaps and the potential areas for future research. This is achieved by conducting a systematic review of studies with demonstrative case studies and experimental setups in construction. Based on the observed research gaps, prominent future research directions are suggested, focusing on technologies in data transmission, interoperability and data integration and data processing and visualisation

    Microwave Devices for Wearable Sensors and IoT

    Get PDF
    The Internet of Things (IoT) paradigm is currently highly demanded in multiple scenarios and in particular plays an important role in solving medical-related challenges. RF and microwave technologies, coupled with wireless energy transfer, are interesting candidates because of their inherent contactless spectrometric capabilities and for the wireless transmission of sensing data. This article reviews some recent achievements in the field of wearable sensors, highlighting the benefits that these solutions introduce in operative contexts, such as indoor localization and microwave sensing. Wireless power transfer is an essential requirement to be fulfilled to allow these sensors to be not only wearable but also compact and lightweight while avoiding bulky batteries. Flexible materials and 3D printing polymers, as well as daily garments, are widely exploited within the presented solutions, allowing comfort and wearability without renouncing the robustness and reliability of the built-in wearable sensor

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Application of knowledge management principles to support maintenance strategies in healthcare organisations

    Get PDF
    Healthcare is a vital service that touches people's lives on a daily basis by providing treatment and resolving patients' health problems through the staff. Human lives are ultimately dependent on the skilled hands of the staff and those who manage the infrastructure that supports the daily operations of the service, making it a compelling reason for a dedicated research study. However, the UK healthcare sector is undergoing rapid changes, driven by rising costs, technological advancements, changing patient expectations, and increasing pressure to deliver sustainable healthcare. With the global rise in healthcare challenges, the need for sustainable healthcare delivery has become imperative. Sustainable healthcare delivery requires the integration of various practices that enhance the efficiency and effectiveness of healthcare infrastructural assets. One critical area that requires attention is the management of healthcare facilities. Healthcare facilitiesis considered one of the core elements in the delivery of effective healthcare services, as shortcomings in the provision of facilities management (FM) services in hospitals may have much more drastic negative effects than in any other general forms of buildings. An essential element in healthcare FM is linked to the relationship between action and knowledge. With a full sense of understanding of infrastructural assets, it is possible to improve, manage and make buildings suitable to the needs of users and to ensure the functionality of the structure and processes. The premise of FM is that an organisation's effectiveness and efficiency are linked to the physical environment in which it operates and that improving the environment can result in direct benefits in operational performance. The goal of healthcare FM is to support the achievement of organisational mission and goals by designing and managing space and infrastructural assets in the best combination of suitability, efficiency, and cost. In operational terms, performance refers to how well a building contributes to fulfilling its intended functions. Therefore, comprehensive deployment of efficient FM approaches is essential for ensuring quality healthcare provision while positively impacting overall patient experiences. In this regard, incorporating knowledge management (KM) principles into hospitals' FM processes contributes significantly to ensuring sustainable healthcare provision and enhancement of patient experiences. Organisations implementing KM principles are better positioned to navigate the constantly evolving business ecosystem easily. Furthermore, KM is vital in processes and service improvement, strategic decision-making, and organisational adaptation and renewal. In this regard, KM principles can be applied to improve hospital FM, thereby ensuring sustainable healthcare delivery. Knowledge management assumes that organisations that manage their organisational and individual knowledge more effectively will be able to cope more successfully with the challenges of the new business ecosystem. There is also the argument that KM plays a crucial role in improving processes and services, strategic decision-making, and adapting and renewing an organisation. The goal of KM is to aid action – providing "a knowledge pull" rather than the information overload most people experience in healthcare FM. Other motivations for seeking better KM in healthcare FM include patient safety, evidence-based care, and cost efficiency as the dominant drivers. The most evidence exists for the success of such approaches at knowledge bottlenecks, such as infection prevention and control, working safely, compliances, automated systems and reminders, and recall based on best practices. The ability to cultivate, nurture and maximise knowledge at multiple levels and in multiple contexts is one of the most significant challenges for those responsible for KM. However, despite the potential benefits, applying KM principles in hospital facilities is still limited. There is a lack of understanding of how KM can be effectively applied in this context, and few studies have explored the potential challenges and opportunities associated with implementing KM principles in hospitals facilities for sustainable healthcare delivery. This study explores applying KM principles to support maintenance strategies in healthcare organisations. The study also explores the challenges and opportunities, for healthcare organisations and FM practitioners, in operationalising a framework which draws the interconnectedness between healthcare. The study begins by defining healthcare FM and its importance in the healthcare industry. It then discusses the concept of KM and the different types of knowledge that are relevant in the healthcare FM sector. The study also examines the challenges that healthcare FM face in managing knowledge and how the application of KM principles can help to overcome these challenges. The study then explores the different KM strategies that can be applied in healthcare FM. The KM benefits include improved patient outcomes, reduced costs, increased efficiency, and enhanced collaboration among healthcare professionals. Additionally, issues like creating a culture of innovation, technology, and benchmarking are considered. In addition, a framework that integrates the essential concepts of KM in healthcare FM will be presented and discussed. The field of KM is introduced as a complex adaptive system with numerous possibilities and challenges. In this context, and in consideration of healthcare FM, five objectives have been formulated to achieve the research aim. As part of the research, a number of objectives will be evaluated, including appraising the concept of KM and how knowledge is created, stored, transferred, and utilised in healthcare FM, evaluating the impact of organisational structure on job satisfaction as well as exploring how cultural differences impact knowledge sharing and performance in healthcare FM organisations. This study uses a combination of qualitative methods, such as meetings, observations, document analysis (internal and external), and semi-structured interviews, to discover the subjective experiences of healthcare FM employees and to understand the phenomenon within a real-world context and attitudes of healthcare FM as the data collection method, using open questions to allow probing where appropriate and facilitating KM development in the delivery and practice of healthcare FM. The study describes the research methodology using the theoretical concept of the "research onion". The qualitative research was conducted in the NHS acute and non-acute hospitals in Northwest England. Findings from the research study revealed that while the concept of KM has grown significantly in recent years, KM in healthcare FM has received little or no attention. The target population was fifty (five FM directors, five academics, five industry experts, ten managers, ten supervisors, five team leaders and ten operatives). These seven groups were purposively selected as the target population because they play a crucial role in KM enhancement in healthcare FM. Face-to-face interviews were conducted with all participants based on their pre-determined availability. Out of the 50-target population, only 25 were successfully interviewed to the point of saturation. Data collected from the interview were coded and analysed using NVivo to identify themes and patterns related to KM in healthcare FM. The study is divided into eight major sections. First, it discusses literature findings regarding healthcare FM and KM, including underlying trends in FM, KM in general, and KM in healthcare FM. Second, the research establishes the study's methodology, introducing the five research objectives, questions and hypothesis. The chapter introduces the literature on methodology elements, including philosophical views and inquiry strategies. The interview and data analysis look at the feedback from the interviews. Lastly, a conclusion and recommendation summarise the research objectives and suggest further research. Overall, this study highlights the importance of KM in healthcare FM and provides insights for healthcare FM directors, managers, supervisors, academia, researchers and operatives on effectively leveraging knowledge to improve patient care and organisational effectiveness

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ

    IEOM Society International

    Get PDF
    IEOM Society Internationa

    Cooperative Vehicle Perception and Localization Using Infrastructure-based Sensor Nodes

    Get PDF
    Reliable and accurate Perception and Localization (PL) are necessary for safe intelligent transportation systems. The current vehicle-based PL techniques in autonomous vehicles are vulnerable to occlusion and cluttering, especially in busy urban driving causing safety concerns. In order to avoid such safety issues, researchers study infrastructure-based PL techniques to augment vehicle sensory systems. Infrastructure-based PL methods rely on sensor nodes that each could include camera(s), Lidar(s), radar(s), and computation and communication units for processing and transmitting the data. Vehicle to Infrastructure (V2I) communication is used to access the sensor node processed data to be fused with the onboard sensor data. In infrastructure-based PL, signal-based techniques- in which sensors like Lidar are used- can provide accurate positioning information while vision-based techniques can be used for classification. Therefore, in order to take advantage of both approaches, cameras are cooperatively used with Lidar in the infrastructure sensor node (ISN) in this thesis. ISNs have a wider field of view (FOV) and are less likely to suffer from occlusion. Besides, they can provide more accurate measurements since they are fixed at a known location. As such, the fusion of both onboard and ISN data has the potential to improve the overall PL accuracy and reliability. This thesis presents a framework for cooperative PL in autonomous vehicles (AVs) by fusing ISN data with onboard sensor data. The ISN includes cameras and Lidar sensors, and the proposed camera Lidar fusion method combines the sensor node information with vehicle motion models and kinematic constraints to improve the performance of PL. One of the main goals of this thesis is to develop a wind induced motion compensation module to address the problem of time-varying extrinsic parameters of the ISNs. The proposed module compensates for the effect of the motion of ISN posts due to wind or other external disturbances. To address this issue, an unknown input observer is developed that uses the motion model of the light post as well as the sensor data. The outputs of the ISN, the positions of all objects in the FOV, are then broadcast so that autonomous vehicles can access the information via V2I connectivity to fuse with their onboard sensory data through the proposed cooperative PL framework. In the developed framework, a KCF is implemented as a distributed fusion method to fuse ISN data with onboard data. The introduced cooperative PL incorporates the range-dependent accuracy of the ISN measurements into fusion to improve the overall PL accuracy and reliability in different scenarios. The results show that using ISN data in addition to onboard sensor data improves the performance and reliability of PL in different scenarios, specifically in occlusion cases
    • …
    corecore