215 research outputs found

    Adaptive BEM with optimal convergence rates for the Helmholtz equation

    Get PDF
    We analyze an adaptive boundary element method for the weakly-singular and hypersingular integral equations for the 2D and 3D Helmholtz problem. The proposed adaptive algorithm is steered by a residual error estimator and does not rely on any a priori information that the underlying meshes are sufficiently fine. We prove convergence of the error estimator with optimal algebraic rates, independently of the (coarse) initial mesh. As a technical contribution, we prove certain local inverse-type estimates for the boundary integral operators associated with the Helmholtz equation

    Inverse estimates for elliptic boundary integral operators and their application to the adaptive coupling of FEM and BEM

    Full text link
    We prove inverse-type estimates for the four classical boundary integral operators associated with the Laplace operator. These estimates are used to show convergence of an h-adaptive algorithm for the coupling of a finite element method with a boundary element method which is driven by a weighted residual error estimator

    ZZ-type aposteriori error estimators for adaptive boundary element methods on a curve

    Get PDF
    In the context of the adaptive finite element method (FEM), ZZ-error estimators named after Zienkiewicz and Zhu are mathematically well-established and widely used in practice. In this work, we propose and analyze ZZ-type error estimators for the adaptive boundary element method (BEM). We consider weakly-singular and hyper-singular integral equations and prove, in particular, convergence of the related adaptive mesh-refining algorithms

    Adaptive boundary element methods with convergence rates

    Full text link
    This paper presents adaptive boundary element methods for positive, negative, as well as zero order operator equations, together with proofs that they converge at certain rates. The convergence rates are quasi-optimal in a certain sense under mild assumptions that are analogous to what is typically assumed in the theory of adaptive finite element methods. In particular, no saturation-type assumption is used. The main ingredients of the proof that constitute new findings are some results on a posteriori error estimates for boundary element methods, and an inverse-type inequality involving boundary integral operators on locally refined finite element spaces.Comment: 48 pages. A journal version. The previous version (v3) is a bit lengthie

    Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators

    Get PDF
    We discuss several adaptive mesh-refinement strategies based on (h − h/2)-error estimation. This class of adaptivemethods is particularly popular in practise since it is problem independent and requires virtually no implementational overhead. We prove that, under the saturation assumption, these adaptive algorithms are convergent. Our framework applies not only to finite element methods, but also yields a first convergence proof for adaptive boundary element schemes. For a finite element model problem, we extend the proposed adaptive scheme and prove convergence even if the saturation assumption fails to hold in general
    corecore