4,318 research outputs found

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    Regulatory and Policy Implications of Emerging Technologies to Spectrum Management

    Get PDF
    This paper provides an overview of the policy implications of technological developments, and how these technologies can accommodate an increased level of market competition. It is based on the work carried out in the SPORT VIEWS (Spectrum Policies and Radio Technologies Viable In Emerging Wireless Societies) research project for the European Commission (FP6)spectrum, new radio technologies, UWB, SDR, cognitive radio, Telecommunications, regulation, Networks, Interconnection

    Defeating jamming with the power of silence: a game-theoretic analysis

    Full text link
    The timing channel is a logical communication channel in which information is encoded in the timing between events. Recently, the use of the timing channel has been proposed as a countermeasure to reactive jamming attacks performed by an energy-constrained malicious node. In fact, whilst a jammer is able to disrupt the information contained in the attacked packets, timing information cannot be jammed and, therefore, timing channels can be exploited to deliver information to the receiver even on a jammed channel. Since the nodes under attack and the jammer have conflicting interests, their interactions can be modeled by means of game theory. Accordingly, in this paper a game-theoretic model of the interactions between nodes exploiting the timing channel to achieve resilience to jamming attacks and a jammer is derived and analyzed. More specifically, the Nash equilibrium is studied in the terms of existence, uniqueness, and convergence under best response dynamics. Furthermore, the case in which the communication nodes set their strategy and the jammer reacts accordingly is modeled and analyzed as a Stackelberg game, by considering both perfect and imperfect knowledge of the jammer's utility function. Extensive numerical results are presented, showing the impact of network parameters on the system performance.Comment: Anti-jamming, Timing Channel, Game-Theoretic Models, Nash Equilibriu

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Security in Wireless Sensor Networks: Issues and Challenges

    Get PDF
    Wireless Sensor Network (WSN) is an emerging technology that shows great promise for various futuristic applications both for mass public and military. The sensing technology combined with processing power and wireless communication makes it lucrative for being exploited in abundance in future. The inclusion of wireless communication technology also incurs various types of security threats. The intent of this paper is to investigate the security related issues and challenges in wireless sensor networks. We identify the security threats, review proposed security mechanisms for wireless sensor networks. We also discuss the holistic view of security for ensuring layered and robust security in wireless sensor networks.Comment: 6 page

    Towards efficient coexistence of IEEE 802.15.4e TSCH and IEEE 802.11

    Full text link
    A major challenge in wide deployment of smart wireless devices, using different technologies and sharing the same 2.4 GHz spectrum, is to achieve coexistence across multiple technologies. The IEEE~802.11 (WLAN) and the IEEE 802.15.4e TSCH (WSN) where designed with different goals in mind and both play important roles for respective applications. However, they cause mutual interference and degraded performance while operating in the same space. To improve this situation we propose an approach to enable a cooperative control which type of network is transmitting at given time, frequency and place. We recognize that TSCH based sensor network is expected to occupy only small share of time, and that the nodes are by design tightly synchronized. We develop mechanism enabling over-the-air synchronization of the Wi-Fi network to the TSCH based sensor network. Finally, we show that Wi-Fi network can avoid transmitting in the "collision periods". We provide full design and show prototype implementation based on the Commercial off-the-shelf (COTS) devices. Our solution does not require changes in any of the standards.Comment: 8 page
    • …
    corecore