553 research outputs found

    A new manual wheelchair propulsion system with self-locking capability on ramps

    Get PDF
    A wheelchair user faces many difficulties in their everyday attempts to use ramps, especially those of some length. The present work describes the design and build of a propulsion system for manual wheelchairs for use in ascending or descending long ramps. The design is characterized by a self-locking mechanism that activates automatically to brake the chair when the user stops pushing. The system consists of a planetary transmission with a self-locking capacity coupled to a push rim with which the user moves the system. Different transmission ratios are proposed, adapted to the slope and to the user’s physical capacity (measured as the power the user can apply over ample time periods). The design is shown to be viable in terms of resistance, and approximate dimensions are established for the height and width of the propulsion system. Also, a prototype was built in order to test the self-locking system on ramps

    Assessment of field rolling resistance of manual wheelchairs

    Get PDF
    This article proposes a simple and convenient method for assessing the subject-specific rolling resistance acting on a manual wheelchair, which could be used during the provision of clinical service. This method, based on a simple mathematical equation, is sensitive to both the total mass and its fore-aft distribution, which changes with the subject, wheelchair properties, and adjustments. The rolling resistance properties of three types of front casters and four types of rear wheels were determined for two indoor surfaces commonly encountered by wheelchair users (a hard smooth surface and carpet) from measurements of a three-dimensional accelerometer during field deceleration tests performed with artificial load. The average results provided by these experiments were then used as input data to assess the rolling resistance from the mathematical equation with an acceptable accuracy on hard smooth and carpet surfaces (standard errors of the estimates were 4.4 and 3.9 N, respectively). Thus, this method can be confidently used by clinicians to help users make trade-offs between front and rear wheel types and sizes when choosing and adjusting their manual wheelchair.This material was based on work supported by the SACR-FRM project, French National Research Agency (ANR-06-TecSan-020) and the Centre d’Etudeset de Recherche sur l’Appareillage des Handicapés (loaned all MWCs required to fulfill this work

    Power-Assist Wheelchair Attachment

    Get PDF
    This senior design project sought to combine the best characteristics of manual and power wheelchairs by creating a battery-powered attachment to propel a manual wheelchair. The primary customer needs were determined to be affordability, portability, and travel on uneven surfaces. After the initial prototype, using a hub motor proved unsuccessful, so a second design was developed that consisted of a gear reduction motor and drive wheel connected to the back of the wheelchair by a trailing arm that could be easily attached/detached from the frame. The prototype of the second design succeeded in meeting most of the project goals related to cost, off-road capability, inclines, and range. Improvements can be made by reducing the attachment weight and improving user control of the device

    Influence of rear wheel tire type on wheelchair propulsion biomechanics

    Get PDF
    The objective of this study was to determine how rear wheel tire type affects wheelchair propulsion mechanics. Four persons with paraplegia and four persons with tetraplegia propelled their own wheelchairs on a roller system at self-selected speed using five different pairs of tires. Upper limb and trunk kinematics, perceived exertion, stroke pattern and the temporal characteristics of propulsion were measured. When using pneumatic (air filled) tires, with lower rolling resistance, participants had lower push frequency (p \u3c .05), higher self selected speed (p \u3c .05), less perceived exertion, less shoulder internal rotation, and a longer push stroke than when using solid, high rolling resistance tires. As rolling resistance increased, participants experienced negative changes in propulsion characteristic that contradicted current clinical practice guidelines for upper limb preservation following spinal cord injury. In addition, kinematics with solid, high rolling resistance tires were similar to those described during uphill or over carpet propulsion. In order to avoid unnecessary strain on the upper limbs and unwanted changes in propulsion biomechanics, wheelchair users, clinicians, and researchers should consider the use of lower rolling resistance, pneumatic rear tires

    Determining and Controlling External Power Output During Regular Handrim Wheelchair Propulsion

    Get PDF
    The use of a manual wheelchair is critical to 1% of the world's population. Human powered wheeled mobility research has considerably matured, which has led to improved research techniques becoming available over the last decades. To increase the understanding of wheeled mobility performance, monitoring, training, skill acquisition, and optimization of the wheelchair-user interface in rehabilitation, daily life, and sports, further standardization of measurement set-ups and analyses is required. A crucial stepping-stone is the accurate measurement and standardization of external power output (measured in Watts), which is pivotal for the interpretation and comparison of experiments aiming to improve rehabilitation practice, activities of daily living, and adaptive sports. The different methodologies and advantages of accurate power output determination during overground, treadmill, and ergometer-based testing are presented and discussed in detail. Overground propulsion provides the most externally valid mode for testing, but standardization can be troublesome. Treadmill propulsion is mechanically similar to overground propulsion, but turning and accelerating is not possible. An ergometer is the most constrained and standardization is relatively easy. The goal is to stimulate good practice and standardization to facilitate the further development of theory and its application among research facilities and applied clinical and sports sciences around the world

    Development of a wheelchair propulsion laboratory

    Get PDF
    In rehabilitation, sports, and research, wheelchair users can be tested on a new wheelchair ergometer. That is the most important finding of the thesis “Development of a wheelchair propulsion laboratory”. The Esseda ergometer, a roller system made in Groningen, has been improved and tested in the past few years. The study showed that wheelchair propulsion on the ergometer is comparable to driving overground and that the ergometer is capable of adequately measuring various aspects of wheelchair propulsion. Wheelchair users can be tested on the ergometer in their own personalized wheelchair. The ergometer can be used to observe people in rehabilitation and other wheelchair users, so that straining techniques can be detected and adjusted in time. This is important because more than half of the wheelchair users suffer from overuse complaints in the arms and shoulders. The wrists, elbows, and shoulder joint are often areas of complaint. This has a major impact on the lives of wheelchair users, because these joints are used in almost all daily tasks. The ergometer can also be of value in adapted sports. For example, the propulsion technique and physical condition of athletes can be studied in detail. The ergometer can therefore be a valuable addition to the toolset of clinicians, sports coaches, and rehabilitation researchers. By giving the wheelchair ergometer a central place in the wheelchair propulsion lab, the skills of wheelchair users can be improved, wheelchairs can be fitted, and complaints of overload as a result of wheelchair use can be prevented

    The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion

    Get PDF
    BACKGROUND: The rear-wheel camber, defined as the inclination of the rear wheels, is usually used in wheelchair sports, but it is becoming increasingly employed in daily propulsion. Although the rear-wheel camber can increase stability, it alters physiological performance during propulsion. The purpose of the study is to investigate the effects of rear-wheel cambers on temporal-spatial parameters, joint angles, and propulsion patterns. METHODS: Twelve inexperienced subjects (22.3±1.6 yr) participated in the study. None had musculoskeletal disorders in their upper extremities. An eight-camera motion capture system was used to collect the three-dimensional trajectory data of markers attached to the wheelchair-user system during propulsion. All participants propelled the same wheelchair, which had an instrumented wheel with cambers of 0°, 9°, and 15°, respectively, at an average velocity of 1 m/s. RESULTS: The results show that the rear-wheel camber significantly affects the average acceleration, maximum end angle, trunk movement, elbow joint movement, wrist joint movement, and propulsion pattern. The effects are especially significant between 0° and 15°. For a 15° camber, the average acceleration and joint peak angles significantly increased (p < 0.01). A single loop pattern (SLOP) was adopted by most of the subjects. CONCLUSIONS: The rear-wheel camber affects propulsion patterns and joint range of motion. When choosing a wheelchair with camber adjustment, the increase of joint movements and the base of support should be taken into consideration

    Drag force mechanical power during an actual propulsion cycle on a manual wheelchair

    Get PDF
    Revue IRBM : http://www.em-consulte.com/revue/irbm/International audienceThe object of this study was to compute the mechanical power of the resultant braking force during an actual propulsion cycle with a manual wheelchair on the field. The resultant braking force was calculated from a mechanical model taking into account the rolling resistances of the front and rear wheels. Both the resultant braking force and the wheelchair velocity were not constant during the propulsion cycle and varied according to the subject's fore-and-aft and vertical movements in the wheelchair. These variations had logical repercussions on the braking force mechanical power, which ranged from 20.6 to 34.5 W (mean = 29.6 W) during the propulsion cycle. The mechanical power was also calculated from the conditions of a classical drag-test, by the product of the cycle mean velocity and a constant braking force corresponding to a 60 % rear wheels distribution of the subject-and- wheelchair's weight. This second mechanical power (32.4 W) was 10 % higher than the average of the instantaneous power. Beyond the need of a clear definition of the two phases of the propulsion cycle, this study showed that the assumption on wheelchair locomotion usually admitted on laboratory ergometers cannot be applied in field studies, and that the kinetic energy variations during the cycle propulsive phase should be considered for evaluating the subject's mechanical work and power
    • …
    corecore