4,732 research outputs found

    Power flow analysis of DC distribution system in a ship with non-electric propulsion

    Get PDF
    Direct current (DC) shipboard power distribution system offers higher power efficiency and voltage stability compared to the alternating current (AC) systems due to lower impedance. The implementation of DC distribution system in all-electric ship seems to be worthy since the reduction of power loss and voltage drop could overcome the drawback of DC system. However, the effectiveness of DC distribution system in ship with non-electric propulsion has not been investigated yet. Unlike in an all-electric ship, electric power flow in the distribution system of a ship with mechanic propulsion is considerably lower. The study aims to provide numerical analysis of power loss and voltage drop reduction on DC distribution system that applied to a ship with mechanic propulsion. The power flow analysis is performed on a tanker ship. Contrary to the hypothesis, the results show that the DC power distribution increase the power losses about 15% compared to AC system due to the addition of rectifier and inverter. However, the voltage drops are decreased in DC distribution system. Further investigation in the other aspects should be performed before concludes whether DC distribution system is worthy to be used in the aforementioned ship

    Development of DC Circuit Breakers for Medium-Voltage Electrified Transportation

    Get PDF
    Medium-voltage DC (MVDC) distribution is an enabling technology for the electrification of transportation such as aircraft and shipboard. One main obstacle for DC distribution is the lack of adequate circuit fault protection. The challenges are due to the rapidly rising fault currents and absence of zero crossings in DC systems compared to AC counterparts. Existing DC breaker solutions lack comprehensive consideration of energy efficiency, power density, fault interruption speed, reliability, and implementation cost. In this thesis, two circuit topologies of improved DC circuit breakers are developed: the resonant current source based hybrid DC breaker (RCS-HDCB) and the high temperature superconductor fault current limiter based solid state DC breaker (HTS-FCL-SSDCB). The RCS-HDCB utilizes a controllable resonant current source based upon wide bandgap (WBG) switches that enable low loss and fast fault interruption due to the fast switching speed. The voltage applied by the controllable resonant current source is much lower than the rated voltage of the DC breaker, allowing the utilization of significantly lower voltage rated WBG switches. The conduction path\u27s sole component is a fast-actuating ultra-low resistance vacuum interrupter for high efficiency during normal operation. As the second DC breaker concept, the HTS-FCL-SSDCB is subdivided into a fault current limiter (FCL) and solid state DC breaker (SSDCB). The FCL is based upon a high temperature superconductor cable which has natural fault current limiting capabilities while having negligible insertion losses for normal load currents. The SSDCB utilizes WBG switches to decrease conduction losses compared to Silicon-based breakers. The FCL reduces fault current such that the number of semiconductive switches in the SSDCB is minimized. Both breakers feature a metal-oxide varistor device in parallel to clamp overvoltages and dissipate energy after fault interruption. Modeling, simulation, and analysis in electrical and thermal domains are conducted to verify the functionality of the DC circuit breakers. The simulation results confirm the feasibility of these two DC breakers in their proposed applications of 2.4 kV electric aircraft and 20 kV shipboard MVDC distribution systems

    Modeling and Real-Time Scheduling of DC Platform Supply Vessel for Fuel Efficient Operation

    Full text link
    DC marine architecture integrated with variable speed diesel generators (DGs) has garnered the attention of the researchers primarily because of its ability to deliver fuel efficient operation. This paper aims in modeling and to autonomously perform real-time load scheduling of dc platform supply vessel (PSV) with an objective to minimize specific fuel oil consumption (SFOC) for better fuel efficiency. Focus has been on the modeling of various components and control routines, which are envisaged to be an integral part of dc PSVs. Integration with photovoltaic-based energy storage system (ESS) has been considered as an option to cater for the short time load transients. In this context, this paper proposes a real-time transient simulation scheme, which comprises of optimized generation scheduling of generators and ESS using dc optimal power flow algorithm. This framework considers real dynamics of dc PSV during various marine operations with possible contingency scenarios, such as outage of generation systems, abrupt load changes, and unavailability of ESS. The proposed modeling and control routines with real-time transient simulation scheme have been validated utilizing the real-time marine simulation platform. The results indicate that the coordinated treatment of renewable based ESS with DGs operating with optimized speed yields better fuel savings. This has been observed in improved SFOC operating trajectory for critical marine missions. Furthermore, SFOC minimization at multiple suboptimal points with its treatment in the real-time marine system is also highlighted

    Achieving Protection Selectivitiy in DC Shipboard Power Systems Employing Additional Bus Capacitance

    Get PDF
    With the implementation of energy efficiency regulations for all ships, DC shipboard power systems (SPS) have attracted much attention from the shipbuilding industry due to their advantages in fuel savings with variable speed engines and the closed bus-tie operation for dynamic positioning vessels. However, DC protection coordination is one of the main obstacles to employ DC power systems into ship power networks. Because, in the DC SPSs, fast fault clearing, e.g., several milliseconds, is necessary to avoid the failure of power converters which have much lower short-circuit withstand capabilities than conventional AC electrical equipment, e.g., generators, transformers and cables. This paper presents a comprehensive analysis of voltage drops and fault clearing time to achieve protection selectivity for centralized and distributed DC SPSs. Furthermore, impacts of additional bus capacitance, which is combined with the existing DC SPSs, are analysed in terms of the protection selectivity. The results show that employing the additional bus capacitance has great advantages in a bus protection by mitigating the voltage drop at the unfaulted bus and a feeder protection by providing the selectivity between the faulty and the adjacent feeders

    Fault detection and location in DC systems from initial di/dt measurement

    Get PDF
    The use of DC for primary power distribution has the potential to bring significant design, cost and efficiency benefits to a range of power transmission and distribution applications. The use of active converter technologies within these networks is a key enabler for these benefits to be realised, however their integration can lead to exceptionally demanding electrical fault protection requirements, both in terms of speed and fault discrimination. This paper describes a novel fault detection method which exceeds the capability of many current protection methods in order to meet these requirements. The method utilises fundamental characteristics of the converter filter capacitance’s response to electrical system faults to estimate fault location through a measurement of fault path inductance. Crucially, the method has the capability to detect and discriminate fault location within microseconds of the fault occurring, facilitating its rapid removal from the network

    System configuration, fault detection, location, isolation and restoration: a review on LVDC Microgrid protections

    Get PDF
    Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration

    Distributed Predictive Control for MVDC Shipboard Power System Management

    Get PDF
    Shipboard Power System (SPS) is known as an independent controlled small electric network powered by the distributed onboard generation system. Since many electric components are tightly coupled in a small space and the system is not supported with a relatively stronger grid, SPS is more susceptible to unexpected disturbances and physical damages compared to conventional terrestrial power systems. Among different distribution configurations, power-electronic based DC distribution is considered the trending technology for the next-generation U.S. Navy fleet design to replace the conventional AC-based distribution. This research presents appropriate control management frameworks to improve the Medium-Voltage DC (MVDC) shipboard power system performance. Model Predictive Control (MPC) is an advanced model-based approach which uses the system model to predict the future output states and generates an optimal control sequence over the prediction horizon. In this research, at first, a centralized MPC is developed for a nonlinear MVDC SPS when a high-power pulsed load exists in the system. The closed-loop stability analysis is considered in the MPC optimization problem. A comparison is presented for different cases of load prediction for MPC, namely, no prediction, perfect prediction, and Autoregressive Integrated Moving Average (ARIMA) prediction. Another centralized MPC controller is also designed to address the reconfiguration problem of the MVDC system in abnormal conditions. The reconfiguration goal is to maximize the power delivered to the loads with respect to power balance, generation limits and load priorities. Moreover, a distributed control structure is proposed for a nonlinear MVDC SPS to develop a scalable power management architecture. In this framework, each subsystem is controlled by a local MPC using its state variables, parameters and interaction variables from other subsystems communicated through a coordinator. The Goal Coordination principle is used to manage interactions between subsystems. The developed distributed control structure brings out several significant advantages including less computational overhead, higher flexibility and a good error tolerance behavior as well as a good overall system performance. To demonstrate the efficiency of the proposed approach, a performance analysis is accomplished by comparing centralized and distributed control of global and partitioned MVDC models for two cases of continuous and discretized control inputs
    • …
    corecore