3,405 research outputs found

    Efficiency analysis of double perturbed pairwise comparison matrices

    Get PDF
    Efficiency is a core concept of multi-objective optimization problems and multi-attribute decision making. In the case of pairwise comparison matrices a weight vector is called efficient if the approximations of the elements of the pairwise comparison matrix made by the ratios of the weights cannot be improved in any position without making it worse in some other position. A pairwise comparison matrix is called double perturbed if it can be made consistent by altering two elements and their reciprocals. The most frequently used weighting method, the eigenvector method is analyzed in the paper, and it is shown that it produces an efficient weight vector for double perturbed pairwise comparison matrices

    An Efficient Dual Approach to Distance Metric Learning

    Full text link
    Distance metric learning is of fundamental interest in machine learning because the distance metric employed can significantly affect the performance of many learning methods. Quadratic Mahalanobis metric learning is a popular approach to the problem, but typically requires solving a semidefinite programming (SDP) problem, which is computationally expensive. Standard interior-point SDP solvers typically have a complexity of O(D6.5)O(D^{6.5}) (with DD the dimension of input data), and can thus only practically solve problems exhibiting less than a few thousand variables. Since the number of variables is D(D+1)/2D (D+1) / 2 , this implies a limit upon the size of problem that can practically be solved of around a few hundred dimensions. The complexity of the popular quadratic Mahalanobis metric learning approach thus limits the size of problem to which metric learning can be applied. Here we propose a significantly more efficient approach to the metric learning problem based on the Lagrange dual formulation of the problem. The proposed formulation is much simpler to implement, and therefore allows much larger Mahalanobis metric learning problems to be solved. The time complexity of the proposed method is O(D3)O (D ^ 3) , which is significantly lower than that of the SDP approach. Experiments on a variety of datasets demonstrate that the proposed method achieves an accuracy comparable to the state-of-the-art, but is applicable to significantly larger problems. We also show that the proposed method can be applied to solve more general Frobenius-norm regularized SDP problems approximately

    Páros összehasonlítás mátrixokból számolt súlyvektorok hatékonysága

    Get PDF
    A többkritériumú döntéshozatal módszereiben gyakran alkalmaznak páros összehasonlítás mátrixokat, amelyekből megfelelő módszerekkel az összehasonlításokban részt vevő alternatívákra vonatkozóan egy fontossági súlyvektor nyerhető ki. A vektoroptimalizálás terminológiáját alkalmazva egy súlyvektor hatékony, ha nem létezik egy másik olyan súlyvektor, amely minden komponensben legalább olyan jól közelít, sőt legalább egy pozícióban szigorúan jobban. Egy súlyvektor gyengén hatékony, ha a páronkénti hányadosokkal való közelítés nem javítható meg egyszerre minden diagonálison kívüli pozícióban. Megmutatjuk, hogy a sajátvektor módszer során alkalmazott, a legnagyobb sajátértékhez tartozó sajátvektor mindig gyengén hatékony, viszont numerikus példákat mutatunk arra is, hogy lehet nem hatékony is. Lineáris programozási feladatokat vezetünk be annak ellenőrzésére, hogy egy adott súlyvektor (gyengén) hatékony-e, és ha nem az, akkor egy (erősen) domináló hatékony súlyvektort is kapunk. Kitérünk a pcmc.online helyen elérhető, böngészőben futtatható Pairwise Comparison Matrix Calculator alkalmazásra is, amelyben az itt bemutatott módszereket is implementáltuk

    Páros összehasonlítás mátrixok a többszempontú döntéselméletben = Pairwise Comparison Matrices in Multi-Criteria Decision Making

    Get PDF
    Döntési helyzetekben általában a legjobb alternatíva kiválasztása, vagy az alternatívák rangsorolása a cél. Ez többszempontú döntési feladatokban különösen nehézzé válhat, hiszen itt általában nincsen olyan alternatíva, amely minden szempont szerint a legjobb. A szempontok súlyozásával és az alternatívák egyes szempontok szerinti értékelésével azonban lehetővé válik a probléma kezelése. A cél, hogy a döntéshozó egyéni preferenciáinak legmegfelelőbb alternatívákat vagy rangsort adjuk meg. A szempontok preferenciáknak megfelelő súlyozása és az alternatívák szempontok szerinti értékelése azonban gyakran közvetlenül nem lehetséges. Ennek áthidalásában segít a páros összehasonlítások módszertana. A súlyok vagy értékelések közvetlen megadása helyett az elemeket páronként egy arányskálán összehasonlítva egy páros összehasonlítás mátrixot kapunk, melyből már számolható a súlyvektor, mely a preferenciák számszerűsítésének tekinthető. A 2. fejezet a páros összehasonlítás mátrixok módszertanát és a kapcsolódó fogalmakat, összefüggéseket mutatja be. Ezek közül kiemelendő a sajátvektor módszer, mely a legelterjedtebb súlyvektor számítási módszer és a későbbi eredmények kapcsolódnak hozzá. Szintén lényeges a nem teljesen kitöltött páros összehasonlítás mátrixok témaköre, melyek olyan mátrixok, amikből hiányoznak elemek. Ez a preferenciával kapcsolatos hiányos információnak felel meg. A 3. fejezet egy irodalmi összefoglaló a páros összehasonlítás mátrixok kiterjedt gazdasági alkalmazásairól. A 4. fejezet már saját eredményeket mutat be. A fejezet a Pareto-hatékonyságról szól, mely ez esetben úgy értelmezendő, hogy a kapott súlyvektor mennyire jól közelíti az eredetileg adott (a döntéshozó preferenciáit leíró) mátrixelemeket. Ha a súlyvektor nem javítható triviálisan, akkor Pareto-hatékony. Sajnos a legelterjedtebb súlyvektor számítási eljárásról, a sajátvektor módszerről nem mondható el, hogy mindig Pareto-hatékony megoldást adna. Sikerült azonban a hatékonyságot megmutatnunk egy speciális, de a gyakorlatban is előforduló mátrixosztály esetén: a legfeljebb két elemtől eltekintve konzisztens mátrixok osztályán. Ezt két lépcsőben tettük meg, az egy, majd a kettő elemtől eltekintve konzisztens mátrixokra kiterjesztve a tételt. Az 5. fejezet két olyan új algoritmust mutat be, melyek a sajátvektor módszer számolására alkalmasak. A sajátvektor módszer a mátrix jobb oldali domináns sajátvektorát adja súlyvektorként. Az első algoritmus nem teljesen kitöltött mátrixokra számolja a sajátvektor módszert, a Newton-módszer segítségével. A második algoritmus kitöltött, de kifejezetten nagy mátrixok esetén szolgáltatja a jobboldali domináns sajátvektort, a ciklikus koordináták módszerét alkalmazva. Ez az algoritmus nem csak páros összehasonlítás mátrixok, hanem bármely pozitív mátrix esetén alkalmazható. A disszertáció 4. és 5. fejezete teljes egészében új eredményeket tartalmaz, illetve a 2. fejezetben a logaritmikus legkisebb négyzetek módszerének optimális kitöltéssel kapcsolatos állítása is új eredmény
    corecore