366 research outputs found

    Model-driven development for pervasive information systems

    Get PDF
    This chapter focus on design methodologies for pervasive information systems (PIS). It aims to contribute for the efficiency and effectiveness on software development of ubiquitous services/applications supported on pervasive information systems. Pervasive information systems are composed of conveniently orchestrated embedded or mobile computing devices that offer innovative ways to support existing and new business models. Those systems are characterized as having a potential large number of interactive heterogeneous embedded/mobile computing devices that collect, process, and communicate information. Additionally, they are target of high rates of technological innovations. Therefore, changes on requirements or in technology demands for frequent modifications on software at device and system levels. Software design and evolution for those requires suitable approaches that cope with such demands and characteristics of pervasive information systems. Model-driven development approaches (which essentially centre the focus of development on models, and involves concepts such as Platform-Independent Models, Platform-Specific Models, model transformations, and use of established standards) currently in research at academic and industrial arenas to design of large systems, offer potential benefits that can be applied to design and evolution of these pervasive information systems. In this chapter, we raise issues and propose strategies related to the software development of PIS using a model-driven development perspective

    Dealing with non-functional requirements in model-driven development

    Get PDF
    The impact of non-functional requirements (NFRs) over software systems has been widely documented. Consequently, cost-effective software production method shall provide means to integrate this type of requirements into the development process. In this vision paper we analyze this assumption over a particular type of software production paradigm: model-driven development (MDD). We report first the current state of MDD approaches with respect to NFRs and remark that, in general, NFRs are not addressed in MDD methods and processes, and we discuss the effects of this situation. Next, we outline a general framework that integrates NFRs into the core of the MDD process and provide a detailed comparison among all the MDD approaches considered. Last, we identify some research issues related to this framework.Preprin

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen

    A Model-Driven Architecture based Evolution Method and Its Application in An Electronic Learning System

    Get PDF
    Software products have been racing against aging problem for most of their lifecycles, and evolution is the most effective and efficient solution to this problem. Model-Driven Architecture (MDA) is a new technique for software product for evolving development and reengineering methods. The main steps for MDA are to establish models in different levels and phases, therefore to solve the challenges of requirement and technology change. However, there is only a standard established by Object Management Group (OMG) but without a formal method and approach. Presently, MDA is widely researched in both industrial and research areas, however, there is still without a smooth approach to realise it especially in electronic learning (e-learning) system due to the following reasons: (1) models’ transformations are hard to realise because of lack of tools, (2) most of existing mature research results are working for business and government services but not education area, and (3) most of existing model-driven researches are based on Model-Driven Development (MDD) but not MDA because of OMG standard’s preciseness. Hence, it is worth to investigate an MDA-based method and approach to improve the existing software development approach for e-learning system. Due to the features of MDA actuality, a MDA-based evolution method and approach is proposed in this thesis. The fundamental theories of this research are OMG’s MDA standard and education pedagogical knowledge. Unified Modelling Language (UML) and Unified Modelling Language Profile are hired to represent the information of software system from different aspects. This study can be divided into three main parts: MDA-based evolution method and approach research, Platform-Independent Model (PIM) to Platform-Specific Model (PSM) transformation development, and MDA-based electronic learning system evolution. Top-down approach is explored to develop models for e-learning system. A transformation approach is developed to generate Computation Independent Model (CIM), Platform-Independent Model (PIM), and Platform-Specific Model (PSM); while a set of transformation rules are defined following MDA standard to support PSM’ s generation. In addition, proposed method is applied in an e-learning system as a case study with the prototype rules support. In the end, conclusions are drawn based on analysis and further research directions are discussed as well. The kernel contributions are the proposed transformation rules and its application in electronic learning system
    corecore