1,025 research outputs found

    Efficiency Evaluation of Character-level RNN Training Schedules

    Get PDF
    We present four training and prediction schedules from the same character-level recurrent neural network. The efficiency of these schedules is tested in terms of model effectiveness as a function of training time and amount of training data seen. We show that the choice of training and prediction schedule potentially has a considerable impact on the prediction effectiveness for a given training budget.Comment: 3 pages, 3 figure

    Social ski driver conditional autoregressive-based deep learning classifier for flight delay prediction

    Get PDF
    The importance of robust flight delay prediction has recently increased in the air transportation industry. This industry seeks alternative methods and technologies for more robust flight delay prediction because of its significance for all stakeholders. The most affected are airlines that suffer from monetary and passenger loyalty losses. Several studies have attempted to analysed and solve flight delay prediction problems using machine learning methods. This research proposes a novel alternative method, namely social ski driver conditional autoregressive-based (SSDCA-based) deep learning. Our proposed method combines the Social Ski Driver algorithm with Conditional Autoregressive Value at Risk by Regression Quantiles. We consider the most relevant instances from the training dataset, which are the delayed flights. We applied data transformation to stabilise the data variance using Yeo-Johnson. We then perform the training and testing of our data using deep recurrent neural network (DRNN) and SSDCA-based algorithms. The SSDCA-based optimisation algorithm helped us choose the right network architecture with better accuracy and less error than the existing literature. The results of our proposed SSDCA-based method and existing benchmark methods were compared. The efficiency and computational time of our proposed method are compared against the existing benchmark methods. The SSDCA-based DRNN provides a more accurate flight delay prediction with 0.9361 and 0.9252 accuracy rates on both dataset-1 and dataset-2, respectively. To show the reliability of our method, we compared it with other meta-heuristic approaches. The result is that the SSDCA-based DRNN outperformed all existing benchmark methods tested in our experiment

    Integrating Temporal Fluctuations in Crop Growth with Stacked Bidirectional LSTM and 3D CNN Fusion for Enhanced Crop Yield Prediction

    Get PDF
    Optimizing farming methods and guaranteeing a steady supply of food depend critically on accurate predictions of crop yields. The dynamic temporal changes that occur during crop growth are generally ignored by conventional crop growth models, resulting in less precise projections. Using a stacked bidirectional Long Short-Term Memory (LSTM) structure and a 3D Convolutional Neural Network (CNN) fusion, we offer a novel neural network model that accounts for temporal oscillations in the crop growth process. The 3D CNN efficiently recovers spatial and temporal features from the crop development data, while the bidirectional LSTM cells capture the sequential dependencies and allow the model to learn from both past and future temporal information. Our model's prediction accuracy is improved by combining the LSTM and 3D CNN layers at the top, which better captures temporal and spatial patterns. We also provide a novel label-related loss function that is optimized for agricultural yield forecasting. Because of the relevance of temporal oscillations in crop development and the dynamic character of crop growth, a new loss function has been developed. This loss function encourages our model to learn and take advantage of the temporal trends, which improves our ability to estimate crop yield. We perform comprehensive experiments on real-world crop growth datasets to verify the efficacy of our suggested approach. The outcomes prove that our unified strategy performs far better than both baseline crop growth prediction algorithms and cutting-edge applications of deep learning. Improved crop yield prediction accuracy is achieved with the integration of temporal variations via the merging of bidirectional LSTM and 3D CNN and a unique loss function. This study helps move the science of estimating crop yields forward, which is important for informing agricultural policy and ensuring a steady supply of food

    The Case for Learned Index Structures

    Full text link
    Indexes are models: a B-Tree-Index can be seen as a model to map a key to the position of a record within a sorted array, a Hash-Index as a model to map a key to a position of a record within an unsorted array, and a BitMap-Index as a model to indicate if a data record exists or not. In this exploratory research paper, we start from this premise and posit that all existing index structures can be replaced with other types of models, including deep-learning models, which we term learned indexes. The key idea is that a model can learn the sort order or structure of lookup keys and use this signal to effectively predict the position or existence of records. We theoretically analyze under which conditions learned indexes outperform traditional index structures and describe the main challenges in designing learned index structures. Our initial results show, that by using neural nets we are able to outperform cache-optimized B-Trees by up to 70% in speed while saving an order-of-magnitude in memory over several real-world data sets. More importantly though, we believe that the idea of replacing core components of a data management system through learned models has far reaching implications for future systems designs and that this work just provides a glimpse of what might be possible

    DeepSolo: Let Transformer Decoder with Explicit Points Solo for Text Spotting

    Full text link
    End-to-end text spotting aims to integrate scene text detection and recognition into a unified framework. Dealing with the relationship between the two sub-tasks plays a pivotal role in designing effective spotters. Although transformer-based methods eliminate the heuristic post-processing, they still suffer from the synergy issue between the sub-tasks and low training efficiency. In this paper, we present DeepSolo, a simple detection transformer baseline that lets a single Decoder with Explicit Points Solo for text detection and recognition simultaneously. Technically, for each text instance, we represent the character sequence as ordered points and model them with learnable explicit point queries. After passing a single decoder, the point queries have encoded requisite text semantics and locations and thus can be further decoded to the center line, boundary, script, and confidence of text via very simple prediction heads in parallel, solving the sub-tasks in text spotting in a unified framework. Besides, we also introduce a text-matching criterion to deliver more accurate supervisory signals, thus enabling more efficient training. Quantitative experiments on public benchmarks demonstrate that DeepSolo outperforms previous state-of-the-art methods and achieves better training efficiency. In addition, DeepSolo is also compatible with line annotations, which require much less annotation cost than polygons. The code will be released.Comment: The code will be available at https://github.com/ViTAE-Transformer/DeepSol
    • …
    corecore