3,734 research outputs found

    High stability radio links

    Get PDF
    Radio telecommunication links are used for communication with deep space probes. These links consist of sinusoidal carrier signals at radio frequencies (RF) modulated with information sent between the spacecraft and the earth. This carrier signal is a very pure and stable sinusoid, typically derived from an atomic frequency standard whose frequency and phase are used to measure the radial velocity of the probe and from this and other data types derive its trajectory. This same observable can be used to search for space-time distortions cased by low frequency (0.1 to 100 MHz) gravitation radiation. How such a system works, what its sensitivity limitations are, and what potential future improvements can be made are discussed

    Current optical technologies for wireless access

    Get PDF
    The objective of this paper is to describe recent activities and investigations on free-space optics (FSO) or optical wireless and the excellent results achieved within SatNEx an EU-framework 6th programme and IC 0802 a COST action. In a first part, the FSO technology is briefly discussed. In a second part, we mention some performance evaluation criterions for the FSO. In third part, we briefly discuss some optical signal propagation experiments through the atmosphere by mentioning network architectures for FSO and then discuss the recent investigations in airborne and satellite application experiments for FSO. In part four, we mention some recent investigation results on modelling the FSO channel under fog conditions and atmospheric turbulence. Additionally, some recent major performance improvement results obtained by employing hybrid systems and using some specific modulation and coding schemes are presented

    Preliminary error budget for an optical ranging system: Range, range rate, and differenced range observables

    Get PDF
    Future missions to the outer solar system or human exploration of Mars may use telemetry systems based on optical rather than radio transmitters. Pulsed laser transmission can be used to deliver telemetry rates of about 100 kbits/sec with an efficiency of several bits for each detected photon. Navigational observables that can be derived from timing pulsed laser signals are discussed. Error budgets are presented based on nominal ground stations and spacecraft-transceiver designs. Assuming a pulsed optical uplink signal, two-way range accuracy may approach the few centimeter level imposed by the troposphere uncertainty. Angular information can be achieved from differenced one-way range using two ground stations with the accuracy limited by the length of the available baseline and by clock synchronization and troposphere errors. A method of synchronizing the ground station clocks using optical ranging measurements is presented. This could allow differenced range accuracy to reach the few centimeter troposphere limit

    Handbook for the estimation of microwave propagation effects: Link calculations for earth-space paths (path loss and noise estimation)

    Get PDF
    A single model for a standard of comparison for other models when dealing with rain attenuation problems in system design and experimentation is proposed. Refinements to the Global Rain Production Model are incorporated. Path loss and noise estimation procedures as the basic input to systems design for earth-to-space microwave links operating at frequencies from 1 to 300 GHz are provided. Topics covered include gaseous absorption, attenuation by rain, ionospheric and tropospheric scintillation, low elevation angle effects, radome attenuation, diversity schemes, link calculation, and receiver noise emission by atmospheric gases, rain, and antenna contributions

    Advanced tracking systems design and analysis

    Get PDF
    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk

    Atmospheric propagation issues relevant to optical communications

    Get PDF
    Atmospheric propagation issues relevant to space-to-ground optical communications for near-earth applications are studied. Propagation effects, current optical communication activities, potential applications, and communication techniques are surveyed. It is concluded that a direct-detection space-to-ground link using redundant receiver sites and temporal encoding is likely to be employed to transmit earth-sensing satellite data to the ground some time in the future. Low-level, long-term studies of link availability, fading statistics, and turbulence climatology are recommended to support this type of application

    Technology needs assessment of an atmospheric observation system for tropospheric research missions, part 1

    Get PDF
    The technology advancements needed to implement the atmospheric observation satellite systems for air quality research were identified. Tropospheric measurements are considered. The measurements and sensors are based on a model of knowledge objectives in atmospheric science. A set of potential missions and attendant spacecraft and sensors is postulated. The results show that the predominant technology needs will be in passive and active sensors for accurate and frequent global measurements of trace gas concentration profiles

    Voyager mission support (2)

    Get PDF
    The Deep Space Network report on tracking and data acquisition for Voyager Project is continued. The period of August through October 1980 is covered. The use of beacons for interplanetary navigation, specifically for target related navigation, was shown to be of significant value
    • …
    corecore