180 research outputs found

    Link-Layer Cooperative Communication in Vehicular Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) are a special kind of communication networks and possess unique characteristics as compared with general mobile ad hoc networks (MANETs), where vehicles communicate with each other or with stationary road side units. Hence, directly applying the existing communication protocols designed for MANETs may not be reliable and efficient in VANETs. Thus, this thesis presents link-layer cooperative frameworks to improve transmission reliability and network throughput over distributed TDMA MAC protocols for VANETs. We present a link-layer node cooperation scheme for VANETs, referred to as Cooperative ADHOC MAC (CAH-MAC). In CAH-MAC, neighboring nodes cooperate to utilize unused time slots to retransmit failed packets. Throughput improvement is achieved by using idle time slots that are wasted in the absence of node cooperation. In addition, as a packet is retransmitted earlier by a relay node, transmission delay and packet dropping rate are reduced. We study the effects of a dynamic networking environment on the performance of CAH-MAC. It is observed that, system performance degrades due to cooperation collisions. To tackle this challenge, we present an enhanced CAH-MAC (eCAH-MAC) scheme. In eCAH-MAC, using different types of packet and by delaying or suspending some relay transmissions, cooperation collisions can be avoided and cooperation opportunities can be efficiently utilize without disrupting the normal operations of the distributed TDMA MAC. We propose a node cooperation based makeup strategy for vehicular networks, referred to as cooperative relay broadcasting (CRB), such that neighboring nodes proactively rebroadcast the packet from a source node. An optimization framework is developed to provide an upper bound on the CRB performance with accurate channel information. Further, we propose a channel prediction scheme based on a two-state first-order Markov chain, to select the best relaying node for CRB. As packets are repeatedly broadcasted by the neighboring nodes before they expire, the proposed CRB framework provides a more reliable broadcast service as compared with existing approaches. The proposed node cooperation frameworks enhance the performance of distributed TDMA MAC and make it more robust to tackle VANET's dynamic networking conditions

    Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: a survey

    Full text link
    [EN] Vehicular ad hoc network (VANET) is an emerging and promising technology, which allows vehicles while moving on the road to communicate and share resources. These resources are aimed at improving traffic safety and providing comfort to drivers and passengers. The resources use applications that have to meet high reliability and delay constraints. However, to implement these applications, VANET relies on medium access control (MAC) protocol. Many approaches have been proposed in the literature using time division multiple access (TDMA) scheme to enhance the efficiency of MAC protocol. Nevertheless, this technique has encountered some challenges including access and merging collisions due to inefficient time slot allocation strategy and hidden terminal problem. Despite several attempts to study this class of protocol, issues such as channel access and time slot scheduling strategy have not been given much attention. In this paper, we have relatively examined the most prominent TDMA MAC protocols which were proposed in the literature from 2010 to 2018. These protocols were classified based on scheduling strategy and the technique adopted. Also, we have comparatively analyzed them based on different parameters and performance metrics used. Finally, some open issues are presented for future deployment.Tambawal, AB.; Noor, RM.; Salleh, R.; Chembe, C.; Anisi, MH.; Michael, O.; Lloret, J. (2019). Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: a survey. Telecommunication Systems. 70(4):595-616. https://doi.org/10.1007/s11235-018-00542-8S59561670

    TDMA-based MAC Protocols for Vehicular Ad Hoc Networks: A Survey, Qualitative Analysis and Open Research Issues

    Get PDF
    International audience—Vehicular Ad-hoc NETworks (VANETs) have attracted a lot of attention in the research community in recent years due to their promising applications. VANETs help improve traffic safety and efficiency. Each vehicle can exchange information to inform other vehicles about the current status of the traffic flow or a dangerous situation such as an accident. Road safety and traffic management applications require a reliable communication scheme with minimal transmission collisions, which thus increase the need for an efficient Medium Access Control (MAC) protocol. However, the design of the MAC in a vehicular network is a challenging task due to the high speed of the nodes, the frequent changes in topology, the lack of an infrastructure, and various QoS requirements. Recently several Time Division Multiple Access (TDMA)-based medium access control protocols have been proposed for VANETs in an attempt to ensure that all the vehicles have enough time to send safety messages without collisions and to reduce the end-to-end delay and the packet loss ratio. In this paper, we identify the reasons for using the collision-free medium access control paradigm in VANETs. We then present a novel topology-based classification and we provide an overview of TDMA-based MAC protocols that have been proposed for VANETs. We focus on the characteristics of these protocols, as well as on their benefits and limitations. Finally, we give a qualitative comparison, and we discuss some open issues that need to be tackled in future studies in order to improve the performance of TDMA-based MAC protocols for vehicle to vehicle (V2V) communications

    Novel Medium Access Control (MAC) Protocols for Wireless Sensor and Ad Hoc Networks (WSANs) and Vehicular Ad Hoc Networks (VANETs)

    Get PDF
    Efficient medium access control (MAC) is a key part of any wireless network communication architecture. MAC protocols are needed for nodes to access the shared wireless medium efficiently. Providing high throughput is one of the primary goals of the MAC protocols designed for wireless networks. MAC protocols for Wireless Sensor and Ad hoc networks (WSANs) must also conserve energy as sensor nodes have limited battery power. On the other hand, MAC protocols for Vehicular Ad hoc networks (VANETs) must also adapt to the highly dynamic nature of the network. As communication link failure is very common in VANETs because of the fast movement of vehicles so quick reservation of packet transmission slots by vehicles is important. In this thesis we propose two new distributed MAC algorithms. One is for WSANs and the other one is for VANETs. We demonstrate using simulations that our algorithms outperform the state-of-the-art algorithms

    Vehicular Ad Hoc Networks: Growth and Survey for Three Layers

    Get PDF
    A vehicular ad hoc network (VANET) is a mobile ad hoc network that allows wireless communication between vehicles, as well as between vehicles and roadside equipment. Communication between vehicles promotes safety and reliability, and can be a source of entertainment. We investigated the historical development, characteristics, and application fields of VANET and briefly introduced them in this study. Advantages and disadvantages were discussed based on our analysis and comparison of various classes of MAC and routing protocols applied to VANET. Ideas and breakthrough directions for inter-vehicle communication designs were proposed based on the characteristics of VANET. This article also illustrates physical, MAC, and network layer in details which represent the three layers of VANET. The main works of the active research institute on VANET were introduced to help researchers track related advanced research achievements on the subject

    A New Media Access Control Protocol For VANET: Priority R-ALOHA (PR-ALOHA)

    Get PDF
    More practical applications of Media Access Control (MAC) protocols arise as the world turns increasingly wireless. Low delay, high throughput and reliable communication are essential requirements for standard performance in safety applications (e.g., lane changes warning, pre-crash warning and electronic brake lights). In particular, multi-priority protocols are important in Vehicular Ad Hoc Networks (VANETs), specifically in Inter-Vehicle Communication (IVC) where safety messages are given higher priority and transmitted faster than normal messages. The R-ALOHA protocol is considered one of the few promising protocols for VANETs because it is simple to implement and suitable for medium access control in Ad Hoc wireless networks. However, R-ALOHA lacks the property of prioritizing the different messages. In this dissertation, a new two-level priority MAC protocol called Priority R-ALOHA (PR-ALOHA) is presented to overcome the lack of priority problem in R-ALOHA. The two levels are low priority and high priority where priority is introduced by reserving specific time slots in the frame exclusively for high priority messages. This effectively increases the number of slots that a high priority message may compete for and thus decreases its delay. A two-dimensional Markov model coupled with Monte Carlo simulation is introduced to investigate the dynamic behavior of PR-ALOHA in steady and transient states. Modeling and simulation results of PR-ALOHA show that PR-ALOHA improves the performance of high priority traffic with limited effect on normal network traffic. Then, a dynamic slot allocation algorithm is introduced to PR-ALOH to optimize slot usage. Finally, a mobility model is introduced to emulate the behavior of the vehicles on the road where the performance of the PR-ALOHA with variable parameters, such as the length of the highway, the vehicle transmission range and the number of vehicles on the road have been investigated. Based on the findings of this dissertation, PR-ALOHA combined with dynamic slot allocation and mobility has a potential in applications like IVC where it can prevent car accidents through faster channel access and rapid transfer of warning messages to surrounding vehicles

    Performance Analysis of Sensing-based Semi-Persistent Scheduling (SB-SPS) MAC Protocol for C-V2X

    Get PDF
    Sensing-based Semi-Persistent Scheduling (SB-SPS) MAC protocol is proposed as part of the latest cellular vehicle to everything (C-V2X) standard for medium access between vehicles. As C-V2X uses LTE based frame structure, mode 4 of the C-V2X standard uses SB-SPS to allocate resource blocks effectively. C-V2X shows great potential for the future as it brings many improvements such as enhanced range, reliability, and the ability to support and evolve with emerging technologies such as 5G. In this article, the SB-SPS protocol’s performance was analyzed in different scenarios using OMNET++, SUMO, and Veins simulator. Different vehicle speeds and densities were used to observe the effect on packet loss and throughput. It was found that as packet loss decreased, throughput increased when the mobility of vehicles decreased. The effects of changing some important parameters of SB-SPS were also observed. The results showed that while parameters such as increasing the number of subchannels increased the packet delivery ratio (PDR), the change in the probability of resource reselection parameter did not affect the PDR

    Achieving Low latency and High Packet Reception Ratio in Media Access Control Layer in VANET

    Get PDF
    Vehicular ad hoc networks (VANETs) or inter-vehiclecommunication (IVC) makes possible the development of a number ofinnovative and powerful transportation system applications. VANETtechnology proves an important extension of both cellular andwireless local area networks (WLANs) currently used in thetransportation industry. It is widely recognized that thetransportation industry serves as an ideal platform for a largenumber of existing and future wireless applications, many of whichhave yet to be developed for commercial use.Safety messaging is one of the most critical uses for VANET,supporting a number of potential safety applications, e.g. emergencyelectronic brake lights, lane change and pre-crash warning, amongothers. Many applications require extremely low latency (less than100ms) and highly reliable (over 99\% packet delivery ratio)communication services. In order to satisfy these criticalrequirements, an efficient media access control (MAC) layer isnecessary. At the time of this writing, a de facto standard of VANETMAC is being developed.Extensive VANET MAC research with regard to safety applications hasyet to be done. The proposed base for the VANET future standard usesan 802.11a media access layer whose performance-although studied-isknown to contain deficiencies and was accomplished outside theVANET context. These factors motivated the author to initiate thestudy of VANET and MAC.In this work, MAC for VANET MAC is extensively researched, and ahistory of MAC is initially reviewed. The special and criticalrequirements of VANET MAC are presented and four major categorieswere investigated and analyzed. Because the under-development of802.11p is based on the IEEE 802.11a, special consideration is givenwith regard to the performance of 802.11a MAC and associatedrequirements. Extensive research enhancements centering on safetyapplications of the 802.11 MAC are conducted. The author's researchgenerated a platform in which VANET performance can bequantitatively evaluated, analyzed, and verified. The quantitativebehavior of the current protocols/algorithms, which include delayand packet delivery ratio, are presented on this platform.Furthermore, the future protocol and algorithm proposals can beadded into this platform so that a faster research cycle can beachieved. Through theoretical analysis and simulation, thisinvestigation shows that current proposed VANET MAC and 802.11a MACenhancements have yet met the critical requirements of VANET. Thefuture work may focus on how to use this theoretical model andsimulation tool to assist MAC layer protocol design. Meanwhile, whennew algorithms are proposed or accepted by the standard, this modeland tool can serve as a fast and convenient platform, where the newalgorithm can be easily added for the sake of evaluation andverification. The feasibility of relaxing some assumptions includedtherein, such as the hidden node problem in a two dimensional space,may also be studied to make the platform closer to a real system

    Some Open Safety Issues in Vehicular Networks

    Get PDF
    International audienceIn this position paper, we briefly review some accepted beliefs which may hide open issues regarding dependability or timeliness in SC scenarios, and we give examples of shortcomings and challenges. Due to space constraints, we focus solely on protocol/algorithmic design issues, failures, limitations of on-board technologies, and radio channel access latencies in the presence of contention. Despite their importance, software issues (correct instantiations of protocols, algorithms, and applications) are not addressed here. We use the terminology defined by S. Shladover: Automation is autonomy augmented with wireless communication capabilities. For fulfilling goal Ω, should we shoot for autonomous driving or for automated driving? Should we trust human supervision (ultimately, if ever needed, some human is in charge) or full automation rather (absolutely no human intervention)

    A blockchain-based authentication protocol for cooperative vehicular ad hoc network

    Get PDF
    The efficiency of cooperative communication protocols to increase the reliability and range of transmission for Vehicular Ad hoc Network (VANET) is proven, but identity verification and communication security are required to be ensured. Though it is difficult to maintain strong network connections between vehicles because of there high mobility, with the help of cooperative communication, it is possible to increase the communication efficiency, minimise delay, packet loss, and Packet Dropping Rate (PDR). However, cooperating with unknown or unauthorized vehicles could result in information theft, privacy leakage, vulnerable to different security attacks, etc. In this paper, a blockchain based secure and privacy preserving authentication protocol is proposed for the Internet of Vehicles (IoV). Blockchain is utilized to store and manage the authentication information in a distributed and decentralized environment and developed on the Ethereum platform that uses a digital signature algorithm to ensure confidentiality, non-repudiation, integrity, and preserving the privacy of the IoVs. For optimized communication, transmitted services are categorized into emergency and optional services. Similarly, to optimize the performance of the authentication process, IoVs are categorized as emergency and general IoVs. The proposed cooperative protocol is validated by numerical analyses which show that the protocol successfully increases the system throughput and decreases PDR and delay. On the other hand, the authentication protocol requires minimum storage as well as generates low computational overhead that is suitable for the IoVs with limited computer resources
    • …
    corecore