470 research outputs found

    Advances in CAD/CAM/CAE Technologies

    Get PDF
    CAD/CAM/CAE technologies find more and more applications in today’s industries, e.g., in the automotive, aerospace, and naval sectors. These technologies increase the productivity of engineers and researchers to a great extent, while at the same time allowing their research activities to achieve higher levels of performance. A number of difficult-to-perform design and manufacturing processes can be simulated using more methodologies available, i.e., experimental work combined with statistical tools (regression analysis, analysis of variance, Taguchi methodology, deep learning), finite element analysis applied early enough at the design cycle, CAD-based tools for design optimizations, CAM-based tools for machining optimizations

    Micro/Nano Structures and Systems

    Get PDF
    Micro/Nano Structures and Systems: Analysis, Design, Manufacturing, and Reliability is a comprehensive guide that explores the various aspects of micro- and nanostructures and systems. From analysis and design to manufacturing and reliability, this reprint provides a thorough understanding of the latest methods and techniques used in the field. With an emphasis on modern computational and analytical methods and their integration with experimental techniques, this reprint is an invaluable resource for researchers and engineers working in the field of micro- and nanosystems, including micromachines, additive manufacturing at the microscale, micro/nano-electromechanical systems, and more. Written by leading experts in the field, this reprint offers a complete understanding of the physical and mechanical behavior of micro- and nanostructures, making it an essential reference for professionals in this field

    Design and Application of Additive Manufacturing

    Get PDF
    Additive manufacturing (AM) is continuously improving and offering innovative alternatives to conventional manufacturing techniques. The advantages of AM (design freedom, reduction in material waste, low-cost prototyping, etc.) can be exploited in different sectors by replacing or complementing traditional manufacturing methods. For this to happen, the combination of design, materials and technology must be deeply analyzed for every specific application. Despite the continuous progress of AM, there is still a need for further investigation in terms of design and applications to boost AM's implementation in the manufacturing industry or even in other sectors where short and personalized series productions could be useful, such as the medical sector. This Special Issue gathers a variety of research articles (12 peer-reviewed papers) involving the design and application of AM, including innovative design approaches where AM is applied to improve conventional methods or currently used techniques, design and modeling methodologies for specific AM applications, design optimization and new methods for the quality control and calibration of simulation methods

    Advanced Composite Materials and Structures

    Get PDF
    Composite materials are used to produce multi-objective structures such as fluid reservoirs, transmission pipes, heat exchangers, pressure vessels due to high strength and stiffness to density ratios and improved corrosion resistance. The mathematical concepts can be used to simulate and analyze the generated mechanical and thermal properties of composite materials regarding to the desired performances in actual working conditions.  To solve and obtain the exact solution of the developed nonlinear differential equations in the composite materials, analytical methods can be applied. Mechanical and thermal analysis of complex composite structures can be numerically analyzed using the Finite Element Method (FEM) to increase performances of composite structures in different working conditions. To decrease failure rate and increase performances of composite structures under complex loading system, thermal stress and effects of static and dynamic loads on the designed shapes of composite structures can be analytically investigated. The stresses and deformation of the composite materials under the complex applied loads can be calculated by using the FEM method in order to be used in terms of safety enhancement of composite structures. To increase the safety level as well as performances of the composite structures in different working conditions, crack development in elastic composites can be simulated and analyzed. To develop and optimize the process of composite deigning in terms of mechanical as well as thermal properties under different mechanical and thermal loading conditions, the advanced machine learning systems can be applied. A review in recent development of composite materials and structures is presented in the study and future research works are also suggested. Thus, to increase performances of composite materials and structures under complex loading systems, advanced methodology of composite designing and modification procedures can be provided by reviewing and assessing recent achievements in the published papers

    Advanced Composite Materials and Structures

    Get PDF
    Composite materials are used to produce multi-objective structures such as fluid reservoirs, transmission pipes, heat exchangers, pressure vessels due to high strength and stiffness to density ratios and improved corrosion resistance. The mathematical concepts can be used to simulate and analyze the generated mechanical and thermal properties of composite materials regarding to the desired performances in actual working conditions.  To solve and obtain the exact solution of the developed nonlinear differential equations in the composite materials, analytical methods can be applied. Mechanical and thermal analysis of complex composite structures can be numerically analyzed using the Finite Element Method (FEM) to increase performances of composite structures in different working conditions. To decrease failure rate and increase performances of composite structures under complex loading system, thermal stress and effects of static and dynamic loads on the designed shapes of composite structures can be analytically investigated. The stresses and deformation of the composite materials under the complex applied loads can be calculated by using the FEM method in order to be used in terms of safety enhancement of composite structures. To increase the safety level as well as performances of the composite structures in different working conditions, crack development in elastic composites can be simulated and analyzed. To develop and optimize the process of composite deigning in terms of mechanical as well as thermal properties under different mechanical and thermal loading conditions, the advanced machine learning systems can be applied. A review in recent development of composite materials and structures is presented in the study and future research works are also suggested. Thus, to increase performances of composite materials and structures under complex loading systems, advanced methodology of composite designing and modification procedures can be provided by reviewing and assessing recent achievements in the published papers

    Smart Flow Control Processes in Micro Scale

    Get PDF
    In recent years, microfluidic devices with a large surface-to-volume ratio have witnessed rapid development, allowing them to be successfully utilized in many engineering applications. A smart control process has been proposed for many years, while many new innovations and enabling technologies have been developed for smart flow control, especially concerning “smart flow control” at the microscale. This Special Issue aims to highlight the current research trends related to this topic, presenting a collection of 33 papers from leading scholars in this field. Among these include studies and demonstrations of flow characteristics in pumps or valves as well as dynamic performance in roiling mill systems or jet systems to the optimal design of special components in smart control systems

    Design and Testing of a Composite Compressor Rotor

    Get PDF
    Additive manufacturing (AM) and molding are manufacturing methods known for building representations or replicas of conceptualized engine components, but was considered impractical for manufacturing operating engine components. More recent technology has rendered composite materials (combining high-temperature polymers and fiber reinforcement) capable of withstanding the temperature and structural requirements to compete with conventional turbomachinery metals. This study explores the application of several high-temperature polymers (ULTEM 9085, Onyx-Carbon fiber, and Epoxy-Carbon fiber) and their survivability in the operating conditions of a P400 Engine compressor. The tests conducted for this study determined their viability as compressor materials. This study required conducting tensile specimen testing, FEA modeling, and physical compressor spin testing. The results of each will be discussed

    Design, Development, and Testing of a Low Cost, Additively-Manufactured, Centrifugal Compressor

    Get PDF
    The three objectives of this research were to: 1.) design, build, and test AM compressors to substitute into COTS micro-gas turbine engines, 2.) provide initial correlations between FEA and compressor failure speed, and 3.) characterize the effects of AM on compressor performance. These goals improved the design cycle cost and the design-validation time cycle. ULTEM 9085, 300-AMB, and Onyx-Kevlar temperature-dependent tensile properties were measured. FEA-predicted failure speeds of stock compressor designs led design improvements, potentially fulfilling the original compressor requirements. Physical testing of the stock and ULTEM 9085 compressors occurred. Comparing these compressors\u27 performances demonstrated that low cost, AM materials are viable alternatives for certain micro-turbine applications. An improved Onyx-Carbon Fiber compressor was tested to failure. These results provide a proof of concept supporting AM compressors, improving the development time cycle. This approach enables high-risk yet low-cost research and development. Additionally, with proper mission planning, low-cost AM compressors could provide significant improvements to engine cost and weight for limited-life applications

    Design, Simulation, Manufacturing: The Innovation Exchange

    Get PDF
    This book reports on topics at the interface between manufacturing, mechanical and chemical engineering. It gives a special emphasis to CAD/CAE systems, information management systems, advanced numerical simulation methods and computational modeling techniques, and their use in product design, industrial process optimization and in the study of the properties of solids, structures and fluids. Control theory, ICT for engineering education as well as ecological design and food technologies are also among the topics discussed in the book. Based on the International Conference on Design, Simulation, Manufacturing: The Innovation Exchange (DSMIE-2018), held on June 12-15, 2018, in Sumy, Ukraine, the book provides academics and professionals with a timely overview and extensive information on trends and technologies behind current and future developments of Industry 4.0, innovative design and renewable energy generation
    corecore