745 research outputs found

    Simulation analysis of FDDI network using NETWORK II.5 software package

    Get PDF
    In recent years, one of the most exciting advances in media has been the use of fiber optics in LANs. The bandwidth provided by Fiber Optic Technology has drastically increased the number of new applications that can be supported by communication networks. In order to support a variety of services, in 1986, the American National Standard Institute (ANSI) Accredited Standards Committee (ASC) X3, and the ASC X3T9.5 Task Group developed a new standard; the Fiber Distributed Data Interface (FDDI) [1]. This is a high speed (100 Mbps) optical communication network based on a token passing mode of operation. The Medium Access Control (MAC) Protocol selected for this network attempts to provide priority services, as well as bounded delay transmission for real time applications [2]. This thesis presents results for the Voice-Data performance of the Medium Access Control (MAC) protocol, selected for the FDDI network, using the NETWORK 11.5 [6] software package. This protocol can provide priority services to different types of traffic, as well as guarantee bounded delays for real-time applications. The effect of various system parameters on performance is investigated

    Evaluation plan for space station network interface units

    Get PDF
    Outlined here is a procedure for evaluating network interface units (NIUs) produced for the Space Station program. The procedures should be equally applicable to the data management system (DMS) testbed NIUs produced by Honeywell and IBM. The evaluation procedures are divided into four areas. Performance measurement tools are hardware and software that must be developed in order to evaluate NIU performance. Performance tests are a series of tests, each of which documents some specific characteristic of NIU and/or network performance. In general, these performance tests quantify the speed, capacity, latency, and reliability of message transmission under a wide variety of conditions. Functionality tests are a series of tests and code inspections that demonstrate the functionality of the particular subset of ISO protocols which have been implemented in a given NIU. Conformance tests are a series of tests which would expose whether or not selected features within the ISO protocols are present and interoperable

    Compression of digital images over local area networks. Appendix 1: Item 3

    Get PDF
    Differential Pulse Code Modulation (DPCM) has been used with speech for many years. It has not been as successful for images because of poor edge performance. The only corruption in DPC is quantizer error but this corruption becomes quite large in the region of an edge because of the abrupt changes in the statistics of the signal. We introduce two improved DPCM schemes; Edge correcting DPCM and Edge Preservation Differential Coding. These two coding schemes will detect the edges and take action to correct them. In an Edge Correcting scheme, the quantizer error for an edge is encoded using a recursive quantizer with entropy coding and sent to the receiver as side information. In an Edge Preserving scheme, when the quantizer input falls in the overload region, the quantizer error is encoded and sent to the receiver repeatedly until the quantizer input falls in the inner levels. Therefore these coding schemes increase the bit rate in the region of an edge and require variable rate channels. We implement these two variable rate coding schemes on a token wing network. Timed token protocol supports two classes of messages; asynchronous and synchronous. The synchronous class provides a pre-allocated bandwidth and guaranteed response time. The remaining bandwidth is dynamically allocated to the asynchronous class. The Edge Correcting DPCM is simulated by considering the edge information under the asynchronous class. For the simulation of the Edge Preserving scheme, the amount of information sent each time is fixed, but the length of the packet or the bit rate for that packet is chosen depending on the availability capacity. The performance of the network, and the performance of the image coding algorithms, is studied

    Performance Improvements for FDDI and CSMA/CD Protocols

    Get PDF
    The High-Performance Computing Initiative from the White House Office of Science and Technology Policy has defined 20 major challenges in science and engineering which are dependent on the solutions to a number of high-performance computing problems. One of the major areas of focus of this initiative is the development of gigabit rate networks to be used in environments such as the space station or a National Research and Educational Network (NREN). The strategy here is to use existing network designs as building blocks for achieving higher rates, with the ultimate goal being a gigabit rate network. Two strategies which contribute to achieving this goal are examined in detail.1 FDDI2 is a token ring network based on fiber optics capable of a 100 Mbps rate. Both media access (MAC) and physical layer modifications are considered. A method is presented which allows one to determine maximum utilization based on the token-holding timer settings. Simulation results show that employing the second counter-rotating ring in combination with destination removal has a multiplicative effect greater than the effect which either of the factors have individually on performance. Two 100 Mbps rings can handle loads in the range of 400 to 500 Mbps for traffic with a uniform distribution and fixed packet size. Performance is dependent on the number of nodes, improving as the number increases. A wide range of environments are examined to illustrate robustness, and a method of implementation is discussed
    • …
    corecore