49,573 research outputs found

    Factors influencing visual attention switch in multi-display user interfaces: a survey

    Get PDF
    Multi-display User Interfaces (MDUIs) enable people to take advantage of the different characteristics of different display categories. For example, combining mobile and large displays within the same system enables users to interact with user interface elements locally while simultaneously having a large display space to show data. Although there is a large potential gain in performance and comfort, there is at least one main drawback that can override the benefits of MDUIs: the visual and physical separation between displays requires that users perform visual attention switches between displays. In this paper, we present a survey and analysis of existing data and classifications to identify factors that can affect visual attention switch in MDUIs. Our analysis and taxonomy bring attention to the often ignored implications of visual attention switch and collect existing evidence to facilitate research and implementation of effective MDUIs.Postprin

    GlobalFestival: Evaluating Real World Interaction on a Spherical Display

    Get PDF
    Spherical displays present compelling opportunities for interaction in public spaces. However, there is little research into how touch interaction should control a spherical surface or how these displays are used in real world settings. This paper presents an in the wild deployment of an application for a spherical display called GlobalFestival that utilises two different touch interaction techniques. The first version of the application allows users to spin and tilt content on the display, while the second version only allows spinning the content. During the 4-day deployment, we collected overhead video data and on-display interaction logs. The analysis brings together quantitative and qualitative methods to understand how users approach and move around the display, how on screen interaction compares in the two versions of the application, and how the display supports social interaction given its novel form factor

    Entry and access : how shareability comes about

    Get PDF
    Shareability is a design principle that refers to how a system, interface, or device engages a group of collocated, co-present users in shared interactions around the same content (or the same object). This is broken down in terms of a set of components that facilitate or constrain the way an interface (or product) is made shareable. Central are the notions of access points and entry points. Entry points invite and entice people into engagement, providing an advance overview, minimal barriers, and a honeypot effect that draws observers into the activity. Access points enable users to join a group's activity, allowing perceptual and manipulative access and fluidity of sharing. We show how these terms can be useful for informing analysis and empirical research

    When the fingers do the talking: A study of group participation for different kinds of shareable surfaces

    Get PDF
    and other research outputs When the fingers do the talking: A study of group par-ticipation for different kinds of shareable surface

    Human operator performance of remotely controlled tasks: Teleoperator research conducted at NASA's George C. Marshal Space Flight Center

    Get PDF
    The capabilities within the teleoperator laboratories to perform remote and teleoperated investigations for a wide variety of applications are described. Three major teleoperator issues are addressed: the human operator, the remote control and effecting subsystems, and the human/machine system performance results for specific teleoperated tasks

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    A practical review of energy saving technology for ageing populations

    Get PDF
    Fuel poverty is a critical issue for a globally ageing population. Longer heating/cooling requirements combine with declining incomes to create a problem in need of urgent attention. One solution is to deploy technology to help elderly users feel informed about their energy use, and empowered to take steps to make it more cost effective and efficient. This study subjects a broad cross section of energy monitoring and home automation products to a formal ergonomic analysis. A high level task analysis was used to guide a product walk through, and a toolkit approach was used thereafter to drive out further insights. The findings reveal a number of serious usability issues which prevent these products from successfully accessing an important target demographic and associated energy saving and fuel poverty outcomes. Design principles and examples are distilled from the research to enable practitioners to translate the underlying research into high quality design-engineering solutions

    Multi-touch 3D Exploratory Analysis of Ocean Flow Models

    Get PDF
    Modern ocean flow simulations are generating increasingly complex, multi-layer 3D ocean flow models. However, most researchers are still using traditional 2D visualizations to visualize these models one slice at a time. Properly designed 3D visualization tools can be highly effective for revealing the complex, dynamic flow patterns and structures present in these models. However, the transition from visualizing ocean flow patterns in 2D to 3D presents many challenges, including occlusion and depth ambiguity. Further complications arise from the interaction methods required to navigate, explore, and interact with these 3D datasets. We present a system that employs a combination of stereoscopic rendering, to best reveal and illustrate 3D structures and patterns, and multi-touch interaction, to allow for natural and efficient navigation and manipulation within the 3D environment. Exploratory visual analysis is facilitated through the use of a highly-interactive toolset which leverages a smart particle system. Multi-touch gestures allow users to quickly position dye emitting tools within the 3D model. Finally, we illustrate the potential applications of our system through examples of real world significance

    Assessing the effectiveness of direct gesture interaction for a safety critical maritime application

    Get PDF
    Multi-touch interaction, in particular multi-touch gesture interaction, is widely believed to give a more natural interaction style. We investigated the utility of multi-touch interaction in the safety critical domain of maritime dynamic positioning (DP) vessels. We conducted initial paper prototyping with domain experts to gain an insight into natural gestures; we then conducted observational studies aboard a DP vessel during operational duties and two rounds of formal evaluation of prototypes - the second on a motion platform ship simulator. Despite following a careful user-centred design process, the final results show that traditional touch-screen button and menu interaction was quicker and less erroneous than gestures. Furthermore, the moving environment accentuated this difference and we observed initial use problems and handedness asymmetries on some multi-touch gestures. On the positive side, our results showed that users were able to suspend gestural interaction more naturally, thus improving situational awareness

    A survey of new technology for cockpit application to 1990's transport aircraft simulators

    Get PDF
    Two problems were investigated: inter-equipment data transfer, both on board the aircraft and between air and ground; and crew equipment communication via the cockpit displays and controls. Inter-equipment data transfer is discussed in terms of data bus and data link requirements. Crew equipment communication is discussed regarding the availability of CRT display systems for use in research simulators to represent flat panel displays of the future, and of software controllable touch panels
    corecore