11,350 research outputs found

    Identifying realistic recovery targets and conservation actions for tigers in a human dominated landscape using spatially-explicit densities of wild prey and their determinants

    Get PDF
    Aim Setting realistic population targets and identifying actions for site and landscape-level recovery plans are critical for achieving the global target of doubling wild tiger numbers by 2022. Here, we estimate the spatially explicit densities of wild ungulate prey across a gradient of disturbances in two disjunct tiger habitat blocks (THBs) covering 5212 km2, to evaluate landscape-wide conditions for tigers and identify opportunities and specific actions for recovery. Location Western Terai Arc Landscape, India. Methods Data generated from 96 line transects in 15 systematically selected geographical cells (166.5 km2) were used to estimate spatially explicit densities of six wild ungulate prey species at a fine scale (1 km2). Employing distance-based density surface models, we derived species-specific estimates within three major forest land management categories (inviolate protected areas (PA), PAs with settlements and multiple-use forests). By scaling estimated prey densities using an established relationship, we predicted the carrying capacity for tigers within each THB. Results Species-specific responses of the six wild ungulates to natural-habitat and anthropogenic covariates indicated the need for targeted prey recovery strategies. Inviolate PAs supported the highest prey densities compared with PAs with settlements and multiple-use forests, and specifically benefited the principal tiger prey species (chital Axis axis and sambar Rusa unicolor). The estimated mean prey density of 35.16 (±5.67) individuals per km2 can potentially support 82 (62–106) and 299 (225–377) tigers across THB I and THB II, which currently support 2 (2–7) and 225 (199–256) tigers, respectively. This suggests a potential c. 68% increase in population size given existing prey abundances. Finally, while THB I represents a potential tiger recovery site given adequate prey, PAs where resettlement of pastoralists is underway represent potential prey recovery sites in THB II. Main conclusions This systematic approach of setting realistic population targets and prioritizing spatially explicit recovery strategies should aid in developing effective landscape conservation plans towards achieving global tiger conservation targets

    An allometry-based approach for understanding forest structure, predicting tree-size distribution and assessing the degree of disturbance

    Get PDF
    Tree-size distribution is one of the most investigated subjects in plant population biology. The forestry literature reports that tree-size distribution trajectories vary across different stands and/or species, while the metabolic scaling theory suggests that the tree number scales universally as -2 power of diameter. Here, we propose a simple functional scaling model in which these two opposing results are reconciled. Basic principles related to crown shape, energy optimization and the finite size scaling approach were used to define a set of relationships based on a single parameter, which allows us to predict the slope of the tree-size distributions in a steady state condition. We tested the model predictions on four temperate mountain forests. Plots (4 ha each, fully mapped) were selected with different degrees of human disturbance (semi-natural stands vs. formerly managed). Results showed that the size distribution range successfully fitted by the model is related to the degree of forest disturbance: in semi-natural forests the range is wide, while in formerly managed forests, the agreement with the model is confined to a very restricted range. We argue that simple allometric relationships, at individual level, shape the structure of the whole forest community.Comment: 22 pages, 4 figure

    Historical forest biomass dynamics modelled with Landsat spectral trajectories

    Get PDF
    Acknowledgements National Forest Inventory data are available online, provided by Ministerio de Agricultura, Alimentación y Medio Ambiente (España). Landsat images are available online, provided by the USGS.Peer reviewedPostprin

    Robust Modeling and Predictions of Greenhouse Gas Fluxes from Forest and Wetland Ecosystems

    Get PDF
    The land-atmospheric exchanges of carbon dioxide (CO2) and methane (CH4) are major drivers of global warming and climatic changes. The greenhouse gas (GHG) fluxes indicate the dynamics and potential storage of carbon in terrestrial and wetland ecosystems. Appropriate modeling and prediction tools can provide a quantitative understanding and valuable insights into the ecosystem carbon dynamics, while aiding the development of engineering and management strategies to limit emissions of GHGs and enhance carbon sequestration. This dissertation focuses on the development of data-analytics tools and engineering models by employing a range of empirical and semi-mechanistic approaches to robustly predict ecosystem GHG fluxes at variable scales. Scaling-based empirical models were developed by using an extended stochastic harmonic analysis algorithm to achieve spatiotemporally robust predictions of the diurnal cycles of net ecosystem exchange (NEE). A single set of model parameters representing different days/sites successfully estimated the diurnal NEE cycles for various ecosystems. A systematic data-analytics framework was then developed to determine the mechanistic, relative linkages of various climatic and environmental drivers with the GHG fluxes. The analytics, involving big data for diverse ecosystems of the AmeriFLUX network, revealed robust latent patterns: a strong control of radiation-energy variables, a moderate control of temperature-hydrology variables, and a relatively weak control of aerodynamic variables on the terrestrial CO2 fluxes. The data-analytics framework was then employed to determine the relative controls of different climatic, biogeochemical and ecological drivers on CO2 and CH4 fluxes from coastal wetlands. The knowledge was leveraged to develop nonlinear, predictive models of GHG fluxes using a small set of environmental variables. The models were presented in an Excel spreadsheet as an ecological engineering tool to estimate and predict the net ecosystem carbon balance of the wetland ecosystems. The research also investigated the emergent biogeochemical-ecological similitude and scaling laws of wetland GHG fluxes by employing dimensional analysis from fluid mechanics. Two environmental regimes were found to govern the wetland GHG fluxes. The discovered similitude and scaling laws can guide the development of data-based mechanistic models to robustly predict wetland GHG fluxes under a changing climate and environment

    A process-based model of conifer forest structure and function with special emphasis on leaf lifespan

    Get PDF
    We describe the University of Sheffield Conifer Model (USCM), a process-based approach for simulating conifer forest carbon, nitrogen, and water fluxes by up-scaling widely applicable relationships between leaf lifespan and function. The USCM is designed to predict and analyze the biogeochemistry and biophysics of conifer forests that dominated the ice-free high-latitude regions under the high pCO2 “greenhouse” world 290–50 Myr ago. It will be of use in future research investigating controls on the contrasting distribution of ancient evergreen and deciduous forests between hemispheres, and their differential feedbacks on polar climate through the exchange of energy and materials with the atmosphere. Emphasis is placed on leaf lifespan because this trait can be determined from the anatomical characteristics of fossil conifer woods and influences a range of ecosystem processes. Extensive testing of simulated net primary production and partitioning, leaf area index, evapotranspiration, nitrogen uptake, and land surface energy partitioning showed close agreement with observations from sites across a wide climatic gradient. This indicates the generic utility of our model, and adequate representation of the key processes involved in forest function using only information on leaf lifespan, climate, and soils

    Improving water utilization from a catchment perspective

    Get PDF
    Water management / Water scarcity / Water use efficiency / Catchment areas / Calibrations / Hydrology / Models / River basins / Participatory management / Water balance / Case studies / Asia / Africa / South Africa / Zimbabwe

    Modeling carbon allocation in trees: a search for principles

    Get PDF
    We review approaches to predicting carbon and nitrogen allocation in forest models in terms of their underlying assumptions and their resulting strengths and limitations. Empirical and allometric methods are easily developed and computationally efficient, but lack the power of evolution-based approaches to explain and predict multifaceted effects of environmental variability and climate change. In evolution-based methods, allocation is usually determined by maximization of a fitness proxy, either in a fixed environment, which we call optimal response (OR) models, or including the feedback of an individual's strategy on its environment (game-theoretical optimization, GTO). Optimal response models can predict allocation in single trees and stands when there is significant competition only for one resource. Game-theoretical optimization can be used to account for additional dimensions of competition, e.g., when strong root competition boosts root allocation at the expense of wood production. However, we demonstrate that an OR model predicts similar allocation to a GTO model under the root-competitive conditions reported in free-air carbon dioxide enrichment (FACE) experiments. The most evolutionarily realistic approach is adaptive dynamics (AD) where the allocation strategy arises from eco-evolutionary dynamics of populations instead of a fitness proxy. We also discuss emerging entropy-based approaches that offer an alternative thermodynamic perspective on allocation, in which fitness proxies are replaced by entropy or entropy production. To help develop allocation models further, the value of wide-ranging datasets, such as FLUXNET, could be greatly enhanced by ancillary measurements of driving variables, such as water and soil nitrogen availability
    corecore