2,499 research outputs found

    Neuromorphic hardware for somatosensory neuroprostheses

    Get PDF
    In individuals with sensory-motor impairments, missing limb functions can be restored using neuroprosthetic devices that directly interface with the nervous system. However, restoring the natural tactile experience through electrical neural stimulation requires complex encoding strategies. Indeed, they are presently limited in effectively conveying or restoring tactile sensations by bandwidth constraints. Neuromorphic technology, which mimics the natural behavior of neurons and synapses, holds promise for replicating the encoding of natural touch, potentially informing neurostimulation design. In this perspective, we propose that incorporating neuromorphic technologies into neuroprostheses could be an effective approach for developing more natural human-machine interfaces, potentially leading to advancements in device performance, acceptability, and embeddability. We also highlight ongoing challenges and the required actions to facilitate the future integration of these advanced technologies

    A Critical Review Of Post-Secondary Education Writing During A 21st Century Education Revolution

    Get PDF
    Educational materials are effective instruments which provide information and report new discoveries uncovered by researchers in specific areas of academia. Higher education, like other education institutions, rely on instructional materials to inform its practice of educating adult learners. In post-secondary education, developmental English programs are tasked with meeting the needs of dynamic populations, thus there is a continuous need for research in this area to support its changing landscape. However, the majority of scholarly thought in this area centers on K-12 reading and writing. This paucity presents a phenomenon to the post-secondary community. This research study uses a qualitative content analysis to examine peer-reviewed journals from 2003-2017, developmental online websites, and a government issued document directed toward reforming post-secondary developmental education programs. These highly relevant sources aid educators in discovering informational support to apply best practices for student success. Developmental education serves the purpose of addressing literacy gaps for students transitioning to college-level work. The findings here illuminate the dearth of material offered to developmental educators. This study suggests the field of literacy research is fragmented and highlights an apparent blind spot in scholarly literature with regard to English writing instruction. This poses a quandary for post-secondary literacy researchers in the 21st century and establishes the necessity for the literacy research community to commit future scholarship toward equipping college educators teaching writing instruction to underprepared adult learners

    On the path integration system of insects: there and back again

    Get PDF
    Navigation is an essential capability of animate organisms and robots. Among animate organisms of particular interest are insects because they are capable of a variety of navigation competencies solving challenging problems with limited resources, thereby providing inspiration for robot navigation. Ants, bees and other insects are able to return to their nest using a navigation strategy known as path integration. During path integration, the animal maintains a running estimate of the distance and direction to its nest as it travels. This estimate, known as the `home vector', enables the animal to return to its nest. Path integration was the technique used by sea navigators to cross the open seas in the past. To perform path integration, both sailors and insects need access to two pieces of information, their direction and their speed of motion over time. Neurons encoding the heading and speed have been found to converge on a highly conserved region of the insect brain, the central complex. It is, therefore, believed that the central complex is key to the computations pertaining to path integration. However, several questions remain about the exact structure of the neuronal circuit that tracks the animal's heading, how it differs between insect species, and how the speed and direction are integrated into a home vector and maintained in memory. In this thesis, I have combined behavioural, anatomical, and physiological data with computational modelling and agent simulations to tackle these questions. Analysis of the internal compass circuit of two insect species with highly divergent ecologies, the fruit fly Drosophila melanogaster and the desert locust Schistocerca gregaria, revealed that despite 400 million years of evolutionary divergence, both species share a fundamentally common internal compass circuit that keeps track of the animal's heading. However, subtle differences in the neuronal morphologies result in distinct circuit dynamics adapted to the ecology of each species, thereby providing insights into how neural circuits evolved to accommodate species-specific behaviours. The fast-moving insects need to update their home vector memory continuously as they move, yet they can remember it for several hours. This conjunction of fast updating and long persistence of the home vector does not directly map to current short, mid, and long-term memory accounts. An extensive literature review revealed a lack of available memory models that could support the home vector memory requirements. A comparison of existing behavioural data with the homing behaviour of simulated robot agents illustrated that the prevalent hypothesis, which posits that the neural substrate of the path integration memory is a bump attractor network, is contradicted by behavioural evidence. An investigation of the type of memory utilised during path integration revealed that cold-induced anaesthesia disrupts the ability of ants to return to their nest, but it does not eliminate their ability to move in the correct homing direction. Using computational modelling and simulated agents, I argue that the best explanation for this phenomenon is not two separate memories differently affected by temperature but a shared memory that encodes both the direction and distance. The results presented in this thesis shed some more light on the labyrinth that researchers of animal navigation have been exploring in their attempts to unravel a few more rounds of Ariadne's thread back to its origin. The findings provide valuable insights into the path integration system of insects and inspiration for future memory research, advancing path integration techniques in robotics, and developing novel neuromorphic solutions to computational problems

    Strategies for Red-Light Photoswitching

    Get PDF
    Vuorovaikutteiset, muotoutuvat ja jopa älykkäät molekyylirakenteet ovat avain uuden sukupolven lääkeaineisiin ja toiminnallisiin materiaaleihin. Valokytkimet eli yhdisteet, jotka isomeroituvat reversiibelisti valon vaikutuksesta johtaen makroskooppisten ominaisuuksien muutoksiin, ovat erottamaton osa tätä tulevaisuutta. Mahdolliset sovelluskohteet ulottuvat lääketieteestä elektroniikkaan ja robotiikkaan. Valitettavasti useimmat valokytkinrakenteet, esimerkiksi laajalti käytetyt atsobentseenit, absorboivat ultraviolettivaloa, joka on vahingollista monille materiaaleille ja erityisesti eläville soluille. Jotta valokytkinten koko potentiaali voidaan hyödyntää, tarvitaan harmittomalla näkyvällä valolla toimivia yhdisteitä. Puna- tai infrapunavalo olisi ihanteellinen ärsyke biologian alalla käytettäville kytkimille. Sama pätee myös molekyylimoottoreihin eli yhdisteisiin, jotka pyörivät valon vaikutuksesta yksisuuntaisesti. Lisäksi sekä kytkinten että moottorien tulisi isomerisoitua valon vaikutuksesta tehokkaasti ja nopeasti, termisten isomerisaatioreaktioiden tulisi olla sovelluskohteesta riippuen hitaita tai nopeita ja yhdisteiden tulisi toimia hyvin erilaisissa ympäristöissä. Näiden ominaisuuksien hallitsemiseksi on tärkeää ymmärtää niiden taustalla olevat mekanismit. Tässä väitöskirjassa tutkimme kolmea keinoa toteuttaa valokytkentä punaisella valolla: (i) atsobentseenien absorptiospektrin siirtäminen rakennetta muokkaamalla, (ii) uusien, valmiiksi punaista valoa absorboivien rakenteiden hyödyntäminen ja (iii) epäsuora valokytkentä punavalolla aktivoitavia katalyyttejä hyödyntäen. Tarkastelemme strategioita teoreettiselta kannalta ja osoitamme, että niistä jokainen mahdollistaa valokytkennän punaista valoa käyttäen. Kullakin strategialla on etunsa ja haasteensa tehokkaan, nopean ja kestävän valokytkennän toteuttamiseksi. Tästä johtuen yksi ihanteellinen valokytkinmalli ei voi saavuttaa kaikkia eri sovelluksille asetettuja tavoitteita, vaan tulevaisuuden haaste on löytää kuhunkin käyttöön paras ratkaisu. Samoja periaatteita voidaan soveltaa myös molekyylimoottoreihin, jolloin molekulaarisen tason yksisuuntainen kiertoliike voidaan saada aikaan näkyvällä valolla. Lisäksi punaisella valolla toimivien valokytkinten rakenteita hyödyntämällä moottorien rotaatiota saadaan tehostettua.Responsive, adaptive and even intelligent molecular systems have been identified as the key to next-generation pharmaceuticals and functional materials. Photoswitches, compounds that isomerise reversibly between two distinct ground-state species upon excitation with light and consequently give rise to a macroscopic effect, are an integral part of this future. Their potential application areas range from photopharmacology to optoelectronics and soft robotics. However, most conventional photoswitch structures such as azobenzenes absorb ultraviolet light, high-energy photons that are detrimental to many artificial materials and especially to living systems. To harness their full potential, photoswitches should function efficiently with visible light that is benign to the environment. Red or near-infrared light would be the ideal stimulus for switches utilised in biological context, as these wavelengths are least absorbed by living tissue. The same applies to light-driven molecular motors, compounds that exhibit unidirectional rotation upon photoexcitation. In addition to absorption in the red part of the visible spectrum, both switches and motors should exhibit efficient and fast photoisomerisation, favourable thermal isomerisation kinetics and tolerance towards different environments in order to be useful in real-life applications. In this light, it is crucial to understand the underlying fundamental mechanisms that govern these attributes. In this thesis, we explore three different approaches to realise photoswitching with red light: (i) synthetic modifications of azobenzenes, (ii) utilisation of new photoswitch cores that inherently absorb low-energy photons, and (iii) indirect isomerisation with red-light photocatalysts. We study each strategy from a theoretical viewpoint and demonstrate that they all provide means to induce isomerisation with red light, each with unique advantages and challenges in terms of promoting efficient, fast and robust switching. As a result, a single optimal photoswitch system cannot be designed; instead, the challenge lies in identifying the best design for each application. The same principles can also be applied to molecular motors, giving rise to visible-light-powered unidirectional rotary motion on a molecular level. We show that drawing inspiration from red-light-absorbing photoswitches has repercussions not only on the visible-light absorption but also on enhanced rotation dynamics

    Interplay of genetic, epigenetic and transcription factors in the regulation of transcriptional variation in Plasmodium falciparum

    Full text link
    [eng] The most severe form of malaria, caused by Plasmodium falciparum parasites, still kills over half a million people every year, most of them children under the age of five. Despite huge research efforts, reduction in the global burden of disease has stalled in recent years. P. falciparum has a very complex life cycle including, among other steps, sexual reproduction in female Anopheles mosquitos and an asexual intra-erythoricitic development cycle (IDC) inside the human host, which causes the disease. During the IDC, the parasite needs to continuously adapt to changes in its environment including fluctuations in blood temperature, concentration of nutrients and other metabolites, presence of drugs, and a constant fight against the host’s immune system. In this thesis, we have studied the adaptation mechanisms of P. falciparum to this plethora of challenges, with a special focus on clonally variant genes (CVGs). In P. falciparum, CVGs are a set of genes, participating in host-parasite interactions, which can be found both in a transcriptionally active state, characterized by euchromatin, or a transcriptionally silenced state, characterized by heterochromatin. The state of CVGs is inherited by the progeny of a parasite, with stochastic switches occurring at a low frequency. Parasites with the most optimal patterns of CVGs expression are continuously selected as the environment changes, leading to adaptation and survival of the infecting population. In the first paper of this thesis, we have analyzed subcloned parasite populations to characterize, with unprecedented detail, the heterochromatin distribution associated with the active and silenced states of CVGs. This has allowed us to define different kinds of heterochromatin transitions between the active and silenced states of CVGs and has given us new insights on the regulation of var genes (one of the main virulence factors for malaria) and into the regulation of sexual conversion, a process crucial for malaria transmission. Continuing with CVG regulation, in the second paper of the thesis, we have analyzed how patterns of CVG expression are established at the onset of human infections, after passage through transmission stages. Our results suggest a loss of the epigenetic memory during transmission stages and a reset of the heterochromatin patterns that drive CVG expression. Similar patterns of CVG expression arose in different infected individuals, suggesting that the activation probability of a given CVG is an intrinsic property of the gene. In the third paper of the thesis, we have further studied the sexual conversion phenomenon. We have generated a conditional over-expression system for pfap2-g, the CVG that acts as master regulator of sexual conversion, achieving sexual conversion rates of ~90% after induction. Our results have provided new insights on how heterochromatin at different positions affects expression of pfap2-g and have allowed us to characterize the transcriptional profile of the initial stages of sexual commitment with unprecedented sensitivity. Finally, in the fourth paper of this thesis, we have studied the adaptation of the parasite to heat-shock, which happens in natural infections due to fever episodes. We expected CVGs to participate in this phenomenon, but instead we have identified pfap2-hs, a non-clonally variant transcription factor (TF), as the main driver of the heat-shock response in P. falciparum. AP2-HS acts as the functional homolog of HSF1 (a TF that drives the heat-shock response from yeast to mammals, but is absent in P. falciparum), driving a very tight transcriptional response to heat-shock, characterized by the up-regulation of hsp70 and hsp90. Although the presence of directed responses had previously been demonstrated for other cues, it is the first time that the transcription factor driving such a response is identified in P. falciparum. Taken together, the results of this thesis have broadened our knowledge of the regulation of adaptive mechanisms in P. falciparum. Learning about this deadly parasite’s defense mechanisms will be instrumental to design better strategies to fight it back in the future

    (b2023 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2006-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy (this manuscript would require a REVOLUTION in international academy environment!)

    Get PDF
    (b2023 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2006-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy (this manuscript would require a REVOLUTION in international academy environment!

    Visual Cortical Traveling Waves: From Spontaneous Spiking Populations to Stimulus-Evoked Models of Short-Term Prediction

    Get PDF
    Thanks to recent advances in neurotechnology, waves of activity sweeping across entire cortical regions are now routinely observed. Moreover, these waves have been found to impact neural responses as well as perception, and the responses themselves are found to be structured as traveling waves. How exactly do these waves arise? Do they confer any computational advantages? These traveling waves represent an opportunity for an expanded theory of neural computation, in which their dynamic local network activity may complement the moment-to-moment variability of our sensory experience. This thesis aims to help uncover the origin and role of traveling waves in the visual cortex through three Works. In Work 1, by simulating a network of conductance-based spiking neurons with realistically large network size and synaptic density, distance-dependent horizontal axonal time delays were found to be important for the widespread emergence of spontaneous traveling waves consistent with those in vivo. Furthermore, these waves were found to be a dynamic mechanism of gain modulation that may explain the in-vivo result of their modulation of perception. In Work 2, the Kuramoto oscillator model was formulated in the complex domain to study a network possessing distance-dependent time delays. Like in Work 1, these delays produced traveling waves, and the eigenspectrum of the complex-valued delayed matrix, containing a delay operator, provided an analytical explanation of them. In Work 3, the model from Work 2 was adapted into a recurrent neural network for the task of forecasting the frames of videos, with the question of how such a biologically constrained model may be useful in visual computation. We found that the wave activity emergent in this network was helpful, as they were tightly linked with high forecast performance, and shuffle controls revealed simultaneous abolishment of both the waves and performance. All together, these works shed light on the possible origins and uses of traveling waves in the visual cortex. In particular, time delays profoundly shape the spatiotemporal dynamics into traveling waves. This was confirmed numerically (Work 1) and analytically (Work 2). In Work 3, these waves were found to aid in the dynamic computation of visual forecasting

    Social Cognitive Development and Mental Health in Adolescence

    Get PDF
    Adolescence, defined from the age of 10-24, is a key developmental period which is associated with protracted biological, psychological, and social changes. While these neurocognitive changes play an important role in the individual’s social, affective, and cognitive development, adolescence has also been described as a time of “storm and stress”, representing a time of increased vulnerability to mental health problems. This thesis described a series of experimental studies investigating the effects of cognitive training on adolescents’ social cognitive development and mental health. The first experimental chapter (Chapter 2) described a cross-sectional study investigating the effect of age and puberty on susceptibility to prosocial and antisocial influence in 520 adolescents aged 11-18 years. The next two experimental chapters examined the effect of social cognitive training programmes on adolescents’ social cognitive development and mental health. Chapter 3 explored the changes in susceptibility to prosocial and antisocial influence following two 8-week social emotional training programmes in 465 adolescents aged 11-16 years. Chapter 4 described an experimental study examining the effectiveness of an affective control training paradigm (compared to a control training paradigm) in 242 adolescents aged 11-19 years. The study examined the training effect across two training groups, the extent to which training effect varied as a function of age, and how training effect associated with self-reported mental health problems, emotion regulation difficulties, and self-control ability. Finally, Chapter 5 summarised the findings of the empirical studies and discussed how these findings inform the social cognitive development and mental health during adolescence
    corecore