1,768 research outputs found

    A short curriculum of the robotics and technology of computer lab

    Get PDF
    Our research Lab is directed by Prof. Anton Civit. It is an interdisciplinary group of 23 researchers that carry out their teaching and researching labor at the Escuela Politécnica Superior (Higher Polytechnic School) and the Escuela de Ingeniería Informática (Computer Engineering School). The main research fields are: a) Industrial and mobile Robotics, b) Neuro-inspired processing using electronic spikes, c) Embedded and real-time systems, d) Parallel and massive processing computer architecture, d) Information Technologies for rehabilitation, handicapped and elder people, e) Web accessibility and usability In this paper, the Lab history is presented and its main publications and research projects over the last few years are summarized.Nuestro grupo de investigación está liderado por el profesor Civit. Somos un grupo multidisciplinar de 23 investigadores que realizan su labor docente e investigadora en la Escuela Politécnica Superior y en Escuela de Ingeniería Informática. Las principales líneas de investigaciones son: a) Robótica industrial y móvil. b) Procesamiento neuro-inspirado basado en pulsos electrónicos. c) Sistemas empotrados y de tiempo real. d) Arquitecturas paralelas y de procesamiento masivo. e) Tecnología de la información aplicada a la discapacidad, rehabilitación y a las personas mayores. f) Usabilidad y accesibilidad Web. En este artículo se reseña la historia del grupo y se resumen las principales publicaciones y proyectos que ha conseguido en los últimos años

    Five years of designing wireless sensor networks in the Doñana Biological Reserve (Spain): an applications approach

    Get PDF
    Wireless Sensor Networks (WSNs) are a technology that is becoming very popular for many applications, and environmental monitoring is one of its most important application areas. This technology solves the lack of flexibility of wired sensor installations and, at the same time, reduces the deployment costs. To demonstrate the advantages of WSN technology, for the last five years we have been deploying some prototypes in the Doñana Biological Reserve, which is an important protected area in Southern Spain. These prototypes not only evaluate the technology, but also solve some of the monitoring problems that have been raised by biologists working in Doñana. This paper presents a review of the work that has been developed during these five years. Here, we demonstrate the enormous potential of using machine learning in wireless sensor networks for environmental and animal monitoring because this approach increases the amount of useful information and reduces the effort that is required by biologists in an environmental monitoring task

    Robotic Remote Surveillance and Control through Speech Recognition

    Get PDF
    This paper deals with the remote based robotic surveillance system and control through speech processing. Robotic remote surveillance and control through speech recognition is a kind of simple Cyber Physical system. Cyber Physical system is connection between cyber world and physical world around us. Sensors in network map the physical parameters in digital, share the information with processors and CPS intelligently makes the decision after computing. Finally the decision command is translated into physical world by actuators. The speech commands from a user’s distant location are carried over wirelessly to a multifunctional robot unit. Robotic arm over a base will act for voice commands sent over media. Desired surveillance will be facilitated by movement of robot and installed surveillance unit. Video stream feed to user is sensing of physical environment while actions of arm represent the role of actuator. This system used in the heavy industry in any environment

    Software Architecture of Sensor Data Distribution In Planetary Exploration

    Get PDF
    Data from mobile and stationary sensors will be vital in planetary surface exploration. The distribution and collection of sensor data in an ad-hoc wireless network presents a challenge. Irregular terrain, mobile nodes, new associations with access points and repeaters with stronger signals as the network reconfigures to adapt to new conditions, signal fade and hardware failures can cause: a) Data errors; b) Out of sequence packets; c) Duplicate packets; and d) Drop out periods (when node is not connected). To mitigate the effects of these impairments, a robust and reliable software architecture must be implemented. This architecture must also be tolerant of communications outages. This paper describes such a robust and reliable software infrastructure that meets the challenges of a distributed ad hoc network in a difficult environment and presents the results of actual field experiments testing the principles and actual code developed

    The Need of Multidisciplinary Approaches and Engineering Tools for the Development and Implementation of the Smart City Paradigm

    Get PDF
    This paper is motivated by the concept that the successful, effective, and sustainable implementation of the smart city paradigm requires a close cooperation among researchers with different, complementary interests and, in most cases, a multidisciplinary approach. It first briefly discusses how such a multidisciplinary methodology, transversal to various disciplines such as architecture, computer science, civil engineering, electrical, electronic and telecommunication engineering, social science and behavioral science, etc., can be successfully employed for the development of suitable modeling tools and real solutions of such sociotechnical systems. Then, the paper presents some pilot projects accomplished by the authors within the framework of some major European Union (EU) and national research programs, also involving the Bologna municipality and some of the key players of the smart city industry. Each project, characterized by different and complementary approaches/modeling tools, is illustrated along with the relevant contextualization and the advancements with respect to the state of the art

    Semantic-aware Digital Twin for Metaverse: A Comprehensive Review

    Full text link
    To facilitate the deployment of digital twins in Metaverse, the paradigm with semantic awareness has been proposed as a means for enabling accurate and task-oriented information extraction with inherent intelligence. However, this framework requires all devices in the Metaverse environment to be directly linked with the semantic model to enable faithful interpretation of messages. In contrast, this article introduces the digital twin framework, considering a smart industrial application, which enables semantic communication in conjugation with the Metaverse enabling technologies. The fundamentals of this framework are demonstrated on an industrial shopfloor management use case with a digital twin so as to improve its performance through semantic communication. An overview of semantic communication, Metaverse, and digital twins is presented. Integration of these technologies with the basic architecture as well as the impact on future industrial applications is presented. In a nutshell, this article showcases how semantic awareness can be an effective candidate in the implementation of digital twins for Metaverse applications.Comment: 9 pages, 5 figures, 1 tabl

    2Loud? Monitoring traffic noise with mobile phones

    Full text link
    The World Health Organization has recently focused attention on guidelines for night noise in urban areas, based on significant medical evidence of the adverse impacts of exposure to excessive traffic noise on health, especially caused by sleep disturbance. This includes serious illnesses, such as hypertension, arteriosclerosis and myocardial infarction. 2Loud? is a research project with the aim of developing and testing a mobile phone application to allow a community to monitor traffic noise in their environment, with focus on the night period and indoor measurement. Individuals, using mobile phones, provide data on characteristics of their dwellings and systematically record the level of noise inside their homes overnight. The records from multiple individuals are sent to a server, integrated into indicators and shared through mapping. The 2Loud? application is not designed to replace existing scientific measurements, but to add information which is currently not available. Noise measurements to assist the planning and management of traffic noise are normally carried out by designated technicians, using sophisticated equipment, and following specific guidelines for outdoors locations. This process provides very accurate records, however, for being a time consuming and expensive system, it results in a limited number of locations being surveyed and long time between updates. Moreover, scientific noise measurements do not survey inside dwellings. In this paper we present and discuss the participatory process proposed, and currently under implementation and test, to characterize the levels of exposure to traffic noise of residents living in the vicinity of highways in the City of Boroondara (Victoria, Australia) using the 2Loud? application

    Hardware-Aware Algorithm Designs for Efficient Parallel and Distributed Processing

    Get PDF
    The introduction and widespread adoption of the Internet of Things, together with emerging new industrial applications, bring new requirements in data processing. Specifically, the need for timely processing of data that arrives at high rates creates a challenge for the traditional cloud computing paradigm, where data collected at various sources is sent to the cloud for processing. As an approach to this challenge, processing algorithms and infrastructure are distributed from the cloud to multiple tiers of computing, closer to the sources of data. This creates a wide range of devices for algorithms to be deployed on and software designs to adapt to.In this thesis, we investigate how hardware-aware algorithm designs on a variety of platforms lead to algorithm implementations that efficiently utilize the underlying resources. We design, implement and evaluate new techniques for representative applications that involve the whole spectrum of devices, from resource-constrained sensors in the field, to highly parallel servers. At each tier of processing capability, we identify key architectural features that are relevant for applications and propose designs that make use of these features to achieve high-rate, timely and energy-efficient processing.In the first part of the thesis, we focus on high-end servers and utilize two main approaches to achieve high throughput processing: vectorization and thread parallelism. We employ vectorization for the case of pattern matching algorithms used in security applications. We show that re-thinking the design of algorithms to better utilize the resources available in the platforms they are deployed on, such as vector processing units, can bring significant speedups in processing throughout. We then show how thread-aware data distribution and proper inter-thread synchronization allow scalability, especially for the problem of high-rate network traffic monitoring. We design a parallelization scheme for sketch-based algorithms that summarize traffic information, which allows them to handle incoming data at high rates and be able to answer queries on that data efficiently, without overheads.In the second part of the thesis, we target the intermediate tier of computing devices and focus on the typical examples of hardware that is found there. We show how single-board computers with embedded accelerators can be used to handle the computationally heavy part of applications and showcase it specifically for pattern matching for security-related processing. We further identify key hardware features that affect the performance of pattern matching algorithms on such devices, present a co-evaluation framework to compare algorithms, and design a new algorithm that efficiently utilizes the hardware features.In the last part of the thesis, we shift the focus to the low-power, resource-constrained tier of processing devices. We target wireless sensor networks and study distributed data processing algorithms where the processing happens on the same devices that generate the data. Specifically, we focus on a continuous monitoring algorithm (geometric monitoring) that aims to minimize communication between nodes. By deploying that algorithm in action, under realistic environments, we demonstrate that the interplay between the network protocol and the application plays an important role in this layer of devices. Based on that observation, we co-design a continuous monitoring application with a modern network stack and augment it further with an in-network aggregation technique. In this way, we show that awareness of the underlying network stack is important to realize the full potential of the continuous monitoring algorithm.The techniques and solutions presented in this thesis contribute to better utilization of hardware characteristics, across a wide spectrum of platforms. We employ these techniques on problems that are representative examples of current and upcoming applications and contribute with an outlook of emerging possibilities that can build on the results of the thesis
    corecore