197 research outputs found

    Mathematical optimization and game theoretic techniques for multicell beamforming

    Get PDF
    The main challenge in mobile wireless communications is the incompatibility between limited wireless resources and increasing demand on wireless services. The employment of frequency reuse technique has effectively increased the capacity of the network and improved the efficiency of frequency utilization. However, with the emergence of smart phones and even more data hungry applications such as interactive multimedia, higher data rate is demanded by mobile users. On the other hand, the interference induced by spectrum sharing arrangement has severely degraded the quality of service for users and restricted further reduction of cell size and enhancement of frequency reuse factor. Beamforming technique has great potential to improve the network performance. With the employment of multiple antennas, a base station is capable of directionally transmitting signals to desired users through narrow beams rather than omnidirectional waves. This will result users suffer less interference from the signals transmitted to other co-channel users. In addition, with the combination of beamforming technique and appropriate power control schemes, the resources of the wireless networks can be used more efficiently. In this thesis, mathematical optimization and game theoretic techniques have been exploited for beamforming designs within the context of multicell wireless networks. Both the coordinated beamforming and the coalitional game theoretic based beamforming techniques have been proposed. Initially, coordinated multicell beamforming algorithms for mixed design criteria have been developed, in which some users are allowed to achieve target signal-to-interference- plus-noise ratios (SINRs) while the SINRs of rest of the users in all cells will be balanced to a maximum achievable SINR. An SINR balancing based coordinated multicell beamforming algorithm has then been proposed which is capable of balancing users in different cells to different SINR levels. Finally, a coalitional game based multicell beamforming has been considered, in which the proposed coalition formation algorithm can reach to stable coalition structures. The performances of all the proposed algorithms have been demonstrated using MATLAB based simulations

    Esquemas de cooperação entre estações base para o LTE no sentido descendente

    Get PDF
    The explosive growth in wireless traffic and in the number of connected devices as smart phones or computers, are causing a dramatic increase in the levels of interference, which significantly degrades the capacity gains promised by the point-to-point multi input, multi output (MIMO) based techniques. Therefore, it is becoming increasingly clear that major new improvements in spectral efficiency of wireless networks will have to entail addressing intercell interference. So, there is a need for a new cellular architecture that can take these factors under consideration. It is in this context that LTE-Advanced arises. One of the most promising LTE-Advanced technology is Coordinated Multipoint (CoMP), which allows base stations to cooperate among them, in order to mitigate or eliminate the intercell interference and, by doing so, increase the system’s capacity. This thesis intends to study this concept, implementing some schemes that fall under the CoMP concept. In this thesis we consider a distributed precoded multicell approach, where the precoders are computed locally at each BS to mitigate the intercell interference. Two precoder are considered: distributed zero forcing (DZF) and distributed virtual signal-to-interference noise ratio (DVSINR) recently proposed. Then the system is further optimized by computing a power allocation algorithm over the subcarriers that minimizes the average bit error rate (BER). The considered algorithms are also evaluated under imperfect channel state information. A quantized version of the CSI associated to the different links between the BS and the UT is feedback from the UT to the BS. This information is then employed by the different BSs to perform the precoding design. A new DVSINR precoder explicitly designed under imperfect CSI is proposed. The proposed schemes were implemented considering the LTE specifications, and the results show that the considered precoders are efficiently to remove the interference even under imperfect CSI.O crescimento exponencial no tráfego de comunicações sem-fios e no número de dispositivos utilizados (smart phones, computadores portáteis, etc.) está a causar um aumento significativo nos níveis de interferência, que prejudicam significativamente os ganhos de capacidade assegurados pelas tecnologias baseadas em ligações ponto-a-ponto MIMO. Deste modo, torna-se cada vez mais necessário que os grandes aperfeiçoamentos na eficiência espectral de sistemas de comunicações sem-fios tenham em consideração a interferência entre células. De forma a tomar em consideração estes aspectos, uma nova arquitectura celular terá de ser desenvolvida. É assim, neste contexto, que surge o LTE-Advanced. Uma das tecnologias mais promissoras do LTE-Advanced é a Coordenação Multi-Ponto (CoMP), que permite que as estações base cooperem de modo a mitigar a interferência entre células e, deste modo, aumentar a capacidade do sistema. Esta dissertação pretende estudar este conceito, implementando para isso algumas técnicas que se enquadram no conceito do CoMP. Nesta dissertação iremos considerar a implementação de um sistema de pré-codificação em múltiplas células, em que os pré-codificadores são calculados em cada BS, de modo a mitigar a interferência entre células. São considerados dois pré-codificadores: Distributed Zero Forcing (DZF) e Distributed Virtual Signal-to-Interferance Noise Ratio (DVSINR), recentemente proposto. De seguida o sistema é optimizado com a introdução de algoritmos de alocação de potência entre as sub-portadoras com o objectivo de minimizar a taxa média de erros (BER). Os algoritmos considerados são também avaliados em situações em que a informação do estado do canal é imperfeita. Uma versão quantizada da CSI associada a cada uma das diferentes ligações entre as BS e os UT é assim enviada do UT para a BS. Esta informação é então utilizada para calcular os diferentes pré-codificadores em cada BS. Uma nova versão do pré-codificador DVSINR é proposta de modo a lidar com CSI imperfeito. Os esquemas propostos foram implementados considerandos especificações do LTE, e os resultados obtidos demonstram que os pré-codificadores removem de uma forma eficiente a interferência, mesmo em situações em que a CSI é imperfeita

    Técnicas de pré-codificação para sistemas multicelulares coordenados

    Get PDF
    Doutoramento em TelecomunicaçõesCoordenação Multicélula é um tópico de investigação em rápido crescimento e uma solução promissora para controlar a interferência entre células em sistemas celulares, melhorando a equidade do sistema e aumentando a sua capacidade. Esta tecnologia já está em estudo no LTEAdvanced sob o conceito de coordenação multiponto (COMP). Existem várias abordagens sobre coordenação multicélula, dependendo da quantidade e do tipo de informação partilhada pelas estações base, através da rede de suporte (backhaul network), e do local onde essa informação é processada, i.e., numa unidade de processamento central ou de uma forma distribuída em cada estação base. Nesta tese, são propostas técnicas de pré-codificação e alocação de potência considerando várias estratégias: centralizada, todo o processamento é feito na unidade de processamento central; semidistribuída, neste caso apenas parte do processamento é executado na unidade de processamento central, nomeadamente a potência alocada a cada utilizador servido por cada estação base; e distribuída em que o processamento é feito localmente em cada estação base. Os esquemas propostos são projectados em duas fases: primeiro são propostas soluções de pré-codificação para mitigar ou eliminar a interferência entre células, de seguida o sistema é melhorado através do desenvolvimento de vários esquemas de alocação de potência. São propostas três esquemas de alocação de potência centralizada condicionada a cada estação base e com diferentes relações entre desempenho e complexidade. São também derivados esquemas de alocação distribuídos, assumindo que um sistema multicelular pode ser visto como a sobreposição de vários sistemas com uma única célula. Com base neste conceito foi definido uma taxa de erro média virtual para cada um desses sistemas de célula única que compõem o sistema multicelular, permitindo assim projectar esquemas de alocação de potência completamente distribuídos. Todos os esquemas propostos foram avaliados em cenários realistas, bastante próximos dos considerados no LTE. Os resultados mostram que os esquemas propostos são eficientes a remover a interferência entre células e que o desempenho das técnicas de alocação de potência propostas é claramente superior ao caso de não alocação de potência. O desempenho dos sistemas completamente distribuídos é inferior aos baseados num processamento centralizado, mas em contrapartida podem ser usados em sistemas em que a rede de suporte não permita a troca de grandes quantidades de informação.Multicell coordination is a promising solution for cellular wireless systems to mitigate inter-cell interference, improving system fairness and increasing capacity and thus is already under study in LTE-A under the coordinated multipoint (CoMP) concept. There are several coordinated transmission approaches depending on the amount of information shared by the transmitters through the backhaul network and where the processing takes place i.e. in a central processing unit or in a distributed way on each base station. In this thesis, we propose joint precoding and power allocation techniques considering different strategies: Full-centralized, where all the processing takes place at the central unit; Semi-distributed, in this case only some process related with power allocation is done at the central unit; and Fulldistributed, where all the processing is done locally at each base station. The methods are designed in two phases: first the inter-cell interference is removed by applying a set of centralized or distributed precoding vectors; then the system is further optimized by centralized or distributed power allocation schemes. Three centralized power allocation algorithms with per-BS power constraint and different complexity tradeoffs are proposed. Also distributed power allocation schemes are proposed by considering the multicell system as superposition of single cell systems, where we define the average virtual bit error rate (BER) of interference-free single cell system, allowing us to compute the power allocation coefficients in a distributed manner at each BS. All proposed schemes are evaluated in realistic scenarios considering LTE specifications. The numerical evaluations show that the proposed schemes are efficient in removing inter-cell interference and improve system performance comparing to equal power allocation. Furthermore, fulldistributed schemes can be used when the amounts of information to be exchanged over the backhaul is restricted, although system performance is slightly degraded from semi-distributed and full-centralized schemes, but the complexity is considerably lower. Besides that for high degrees of freedom distributed schemes show similar behaviour to centralized ones

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Técnicas de cooperação entre estações base para sistemas celulares

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesA cooperação entre células é uma das áreas de pesquisa em maior crescimento, sendo uma solução promissora para sistemas celulares sem fio, por forma a amenizar a interferência entre as células, melhorar a equidade do sistema e aumentar a capacidade nos anos vindouros. Esta tecnologia já está em estudo no LTE-Advanced sob o conceito de coordenação multiponto (CoOMP). Esta dissertação insere-se na área de comunicações sem fios e tem como principal objectivo, estudar, implementar e avaliar o desempenho de esquemas de cooperação entre estações base, projectados para os futuros sistemas de comunicações móveis de portadora múltipla (OFDM/A). Especificamente, o sistema cooperativo estudado é constituído por duas estações base equipadas com um agregado de antenas, ligadas a uma unidade de processamento central, e dois terminais móveis equipados cada um com apenas uma antena. O sistema referido foi implementado de acordo com as especificações do LTE e avaliado em diversos cenários de propagação. As técnicas desenvolvidas permitem contornar os problemas relacionados com a má qualidade de canal entre emissor e receptor, melhorando o seu desempenho, especificamente ao nível da taxa de erros de transmissão.Multicell cooperation is one of the fastest growing areas of research, and it is a promising solution for cellular wireless systems to mitigate intercell interference, improve system fairness and increase capacity in the years to come. This technology is already under study in LTE-Advanced under the coordinated multipoint (CoOMP) concept. This dissertation is inserted in the wireless communications area, with its main objective being the study, implementation and evaluation of the performance of cooperative schemes between base stations designed for the future mobile communication multiple carrier systems (OFDM/A). Specifically, the cooperative system studied consists of two base stations, each with multiple antenna, connected to a central processing unit, and two mobile terminals, each equipped with only one antenna. The system referred to was implemented in accordance with the specifications of LTE and was tested in various different propagation situations. The developed techniques ensure the mitigation of problems related to interference between the portable terminals namely at the cell edges, improving specifically the bit error rate performance

    Achieving "Massive MIMO" Spectral Efficiency with a Not-so-Large Number of Antennas

    Full text link
    The main focus and contribution of this paper is a novel network-MIMO TDD architecture that achieves spectral efficiencies comparable with "Massive MIMO", with one order of magnitude fewer antennas per active user per cell. The proposed architecture is based on a family of network-MIMO schemes defined by small clusters of cooperating base stations, zero-forcing multiuser MIMO precoding with suitable inter-cluster interference constraints, uplink pilot signals reuse across cells, and frequency reuse. The key idea consists of partitioning the users population into geographically determined "bins", such that all users in the same bin are statistically equivalent, and use the optimal network-MIMO architecture in the family for each bin. A scheduler takes care of serving the different bins on the time-frequency slots, in order to maximize a desired network utility function that captures some desired notion of fairness. This results in a mixed-mode network-MIMO architecture, where different schemes, each of which is optimized for the served user bin, are multiplexed in time-frequency. In order to carry out the performance analysis and the optimization of the proposed architecture in a clean and computationally efficient way, we consider the large-system regime where the number of users, the number of antennas, and the channel coherence block length go to infinity with fixed ratios. The performance predicted by the large-system asymptotic analysis matches very well the finite-dimensional simulations. Overall, the system spectral efficiency obtained by the proposed architecture is similar to that achieved by "Massive MIMO", with a 10-fold reduction in the number of antennas at the base stations (roughly, from 500 to 50 antennas).Comment: Full version with appendice (proofs of theorems). A shortened version without appendice was submitted to IEEE Trans. on Wireless Commun. Appendix B was revised after submissio

    Downlink beamforming for DS-CDMA mobile radio with multimedia services

    Full text link
    corecore