388 research outputs found

    Advances in Clinical Molecular Imaging Instrumentation

    Get PDF
    In this article, we describe recent developments in the design of both single-photon emission computed tomography (SPECT) and positron emission tomography (PET) instrumentation that have led to the current range of superior performance instruments. The adoption of solid-state technology for either complete detectors [e.g., cadmium zinc telluride (CZT)] or read-out systems that replace photomultiplier tubes [avalanche photodiodes (APD) or silicon photomultipliers (SiPM)] provide the advantage of compact technology, enabling flexible system design. In SPECT, CZT is well suited to multi-radionuclide and kinetic studies. For PET, SiPM technology provides MR compatibility and superior time-of-flight resolution, resulting in improved signal-to-noise ratio. Similar SiPM technology has also been used in the construction of the first SPECT insert for clinical brain SPECT/MRI

    Synthesis of Realistic Simultaneous Positron Emission Tomography and Magnetic Resonance Imaging Data

    Get PDF
    The investigation of the performance of different positron emission tomography (PET) reconstruction and motion compensation methods requires accurate and realistic representation of the anatomy and motion trajectories as observed in real subjects during acquisitions. The generation of well-controlled clinical datasets is difficult due to the many different clinical protocols, scanner specifications, patient sizes, and physiological variations. Alternatively, computational phantoms can be used to generate large data sets for different disease states, providing a ground truth. Several studies use registration of dynamic images to derive voxel deformations to create moving computational phantoms. These phantoms together with simulation software generate raw data. This paper proposes a method for the synthesis of dynamic PET data using a fast analytic method. This is achieved by incorporating realistic models of respiratory motion into a numerical phantom to generate datasets with continuous and variable motion with magnetic resonance imaging (MRI)-derived motion modeling and high resolution MRI images. In this paper, data sets for two different clinical traces are presented, ¹⁸F-FDG and ⁶⁸Ga-PSMA. This approach incorporates realistic models of respiratory motion to generate temporally and spatially correlated MRI and PET data sets, as those expected to be obtained from simultaneous PET-MRI acquisitions

    Theoretical and numerical study of MLEM and OSEM reconstruction algorithms for motion correction in emission tomography

    Get PDF
    Patient body-motion and respiratory-motion impacts the image quality of cardiac SPECT and PET perfusion images. Several algorithms exist in the literature to correct for motion within the iterative maximum-likelihood reconstruction framework. In this work, three algorithms are derived starting with Poisson statistics to correct for patient motion. The first one is a motion compensated MLEM algorithm (MC-MLEM). The next two algorithms called MGEM-1 and MGEM-2 (short for Motion Gated OSEM, 1 and 2) use the motion states as subsets, in two different ways. Experiments were performed with NCAT phantoms (with exactly known motion) as the source and attenuation distributions. Experiments were also performed on an anthropomorphic phantom and a patient study. The SIMIND Monte Carlo simulation software was used to create SPECT projection images of the NCAT phantoms. The projection images were then modified to have Poisson noise levels equivalent to that of clinical acquisition. We investigated application of these algorithms to correction of (1) a large body-motion of 2 cm in Superior-Inferior (SI) and Anterior-Posterior (AP) directions each and (2) respiratory motion of 2 cm in SI and 0.6 cm in AP. We determined the bias with respect to the NCAT phantom activity for noiseless reconstructions as well as the bias-variance for noisy reconstructions. The MGEM-1 advanced along the bias-variance curve faster than the MC-MLEM with iterations. The MGEM-1 also lowered the noiseless bias (with respect to NCAT truth) faster with iterations, compared to the MC-MLEM algorithms, as expected with subset algorithms. For the body motion correction with two motion states, after the 9th iteration the bias was close to that of MC-MLEM at iteration 17, reducing the number of iterations by a factor of 1.89. For the respiratory motion correction with 9 motion states, based on the noiseless bias, the iteration reduction factor was approximately 7. For the MGEM-2, however, bias-plot or the bias-variance-plot saturated with iteration because of successive interpolation error. SPECT data was acquired simulating respiratory motion of 2 cm amplitude with an anthropomorphic phantom. A patient study acquired with body motion in a second rest was also acquired. The motion correction was applied to these acquisitions with the anthropomorphic phantom and the patient study, showing marked improvements of image quality with the estimated motion correction. © 2009 IEEE
    corecore