1,845 research outputs found

    Environmental regulation using Plasticoding for the evolution of robots

    Full text link
    Evolutionary robot systems are usually affected by the properties of the environment indirectly through selection. In this paper, we present and investigate a system where the environment also has a direct effect: through regulation. We propose a novel robot encoding method where a genotype encodes multiple possible phenotypes, and the incarnation of a robot depends on the environmental conditions taking place in a determined moment of its life. This means that the morphology, controller, and behavior of a robot can change according to the environment. Importantly, this process of development can happen at any moment of a robot lifetime, according to its experienced environmental stimuli. We provide an empirical proof-of-concept, and the analysis of the experimental results shows that Plasticoding improves adaptation (task performance) while leading to different evolved morphologies, controllers, and behaviour.Comment: This paper was submitted to the Frontiers in Robotics and AI journal on the 22/02/2020, and is still under revie

    Material properties affect evolution's ability to exploit morphological computation in growing soft-bodied creatures

    Get PDF
    The concept of morphological computation holds that the body of an agent can, under certain circumstances, exploit the interaction with the environment to achieve useful behavior, potentially reducing the computational burden of the brain/controller. The conditions under which such phenomenon arises are, however, unclear. We hypothesize that morphological computation will be facilitated by body plans with appropriate geometric, material, and growth properties, while it will be hindered by other body plans in which one or more of these three properties is not well suited to the task. We test this by evolving the geometries and growth processes of soft robots, with either manually-set softer or stiffer material properties. Results support our hypothesis: we find that for the task investigated, evolved softer robots achieve better performances with simpler growth processes than evolved stiffer ones. We hold that the softer robots succeed because they are better able to exploit morphological computation. This four-way interaction among geometry, growth, material properties and morphological computation is but one example phenomenon that can be investigated using the system here introduced, that could enable future studies on the evolution and development of generic soft-bodied creatures

    Fictional Proto-architecture as an Introduction to Biologic Design: Challenging the Concept of Morphogenesis of Neo-architectural Organism

    Get PDF
    The architecture is based on a dialectical search for new ways of matter representation. We deal with the form of contemporary architecture under two approaches: expression and content. The article examines how mathematical principles based on natural growth can be applied in architectural design to create a dynamic, not static, structure. The dynamic process of the cell and its growth provides the basic structure. The continuity of the domain is exemplified by the impact of the new forms on the society that has already begun to emerge from the obscurity. The paper argues that without a deeper and more receptive connection between geometry and performance from a bio-morphogenetic perspective of complex systems. The experimental design methods are applied both to generate and to evaluate an architecture of the futuristic lines. These methodological frameworks focus on cyclically restated themes in the field of parametrises, which are identified as endemic to architecture: the realization of buildings, of multifunctional volumes and customized per se through a gradual approach of the architectural properties and the exploitation of a "concept construction" integrated as a process, obtained through innovative modelling environments. And so, and the reconstruction of architecture as an organ of nature is demonstrated. The new vanguard of proto architecture describes difficulties and inconsistencies in the relationship between theories and structures, difficulties arising from the very idea of "virtually" itself. It becomes difficult to say that a drawing in cyberspace is an architectural form or just a graph of architectural theory; in the virtual space, there is no difference between the particular structure and the general principle. Therefore, the form is first designed, only after to be constructed. Naturally, it is impossible (theoretically or technically) for design and construction processes to take place simultaneously. Predictably, bio-morphosis leads to multiple forms of expression, defined and transmitted in geometric terms. Doi: 10.28991/esj-2020-01248 Full Text: PD

    Morphological Attractors in Darwinian and Lamarckian Evolutionary Robot Systems

    Get PDF

    A Biosymtic (Biosymbiotic Robotic) Approach to Human Development and Evolution. The Echo of the Universe.

    Get PDF
    In the present work we demonstrate that the current Child-Computer Interaction paradigm is not potentiating human development to its fullest – it is associated with several physical and mental health problems and appears not to be maximizing children’s cognitive performance and cognitive development. In order to potentiate children’s physical and mental health (including cognitive performance and cognitive development) we have developed a new approach to human development and evolution. This approach proposes a particular synergy between the developing human body, computing machines and natural environments. It emphasizes that children should be encouraged to interact with challenging physical environments offering multiple possibilities for sensory stimulation and increasing physical and mental stress to the organism. We created and tested a new set of computing devices in order to operationalize our approach – Biosymtic (Biosymbiotic Robotic) devices: “Albert” and “Cratus”. In two initial studies we were able to observe that the main goal of our approach is being achieved. We observed that, interaction with the Biosymtic device “Albert”, in a natural environment, managed to trigger a different neurophysiological response (increases in sustained attention levels) and tended to optimize episodic memory performance in children, compared to interaction with a sedentary screen-based computing device, in an artificially controlled environment (indoors) - thus a promising solution to promote cognitive performance/development; and that interaction with the Biosymtic device “Cratus”, in a natural environment, instilled vigorous physical activity levels in children - thus a promising solution to promote physical and mental health

    Flexible couplings: diffusing neuromodulators and adaptive robotics

    Get PDF
    Recent years have seen the discovery of freely diffusing gaseous neurotransmitters, such as nitric oxide (NO), in biological nervous systems. A type of artificial neural network (ANN) inspired by such gaseous signaling, the GasNet, has previously been shown to be more evolvable than traditional ANNs when used as an artificial nervous system in an evolutionary robotics setting, where evolvability means consistent speed to very good solutionsÂżhere, appropriate sensorimotor behavior-generating systems. We present two new versions of the GasNet, which take further inspiration from the properties of neuronal gaseous signaling. The plexus model is inspired by the extraordinary NO-producing cortical plexus structure of neural fibers and the properties of the diffusing NO signal it generates. The receptor model is inspired by the mediating action of neurotransmitter receptors. Both models are shown to significantly further improve evolvability. We describe a series of analyses suggesting that the reasons for the increase in evolvability are related to the flexible loose coupling of distinct signaling mechanisms, one ÂżchemicalÂż and one Âżelectrical.
    • …
    corecore