503 research outputs found

    Effects of modality, urgency and situation on responses to multimodal warnings for drivers

    Get PDF
    Signifying road-related events with warnings can be highly beneficial, especially when imminent attention is needed. This thesis describes how modality, urgency and situation can influence driver responses to multimodal displays used as warnings. These displays utilise all combinations of audio, visual and tactile modalities, reflecting different urgency levels. In this way, a new rich set of cues is designed, conveying information multimodally, to enhance reactions during driving, which is a highly visual task. The importance of the signified events to driving is reflected in the warnings, and safety-critical or non-critical situations are communicated through the cues. Novel warning designs are considered, using both abstract displays, with no semantic association to the signified event, and language-based ones, using speech. These two cue designs are compared, to discover their strengths and weaknesses as car alerts. The situations in which the new cues are delivered are varied, by simulating both critical and non-critical events and both manual and autonomous car scenarios. A novel set of guidelines for using multimodal driver displays is finally provided, considering the modalities utilised, the urgency signified, and the situation simulated

    Evaluating Multimodal Driver Displays of Varying Urgency

    Get PDF
    Previous studies have evaluated Audio, Visual and Tactile warnings for drivers, highlighting the importance of conveying the appropriate level of urgency through the signals. However, these modalities have never been combined exhaustively with different urgency levels and tested while using a driving simulator. This paper describes two experiments investigating all multimodal combinations of such warnings along three different levels of designed urgency. The warnings were first evaluated in terms of perceived urgency and perceived annoyance in the context of a driving simulator. The results showed that the perceived urgency matched the designed urgency of the warnings. More urgent warnings were also rated as more annoying but the effect of annoyance was lower compared to urgency. The warnings were then tested for recognition time when presented during a simulated driving task. It was found that warnings of high urgency induced quicker and more accurate responses than warnings of medium and of low urgency. In both studies, the number of modalities used in warnings (one, two or three) affected both subjective and objective responses. More modalities led to higher ratings of urgency and annoyance, with annoyance having a lower effect compared to urgency. More modalities also led to quicker responses. These results provide implications for multimodal warning design and reveal how modalities and modality combinations can influence participant responses during a simulated driving task

    Investigating the effect of urgency and modality of pedestrian alert warnings on driver acceptance and performance

    Get PDF
    Active safety systems have the potential to reduce the risk to pedestrians by warning the driver and/or taking evasive action to reduce the effects of or avoid a collision. However, current systems are limited in the range of scenarios they can address using primary control interventions, and this arguably places more emphasis in some situations on warning the driver so that they can take appropriate action in response to pedestrian hazards. In a counterbalanced experimental design, we varied urgency (‘when’) based on the time-to-collision (TTC) at which the warning was presented (with associated false-positive alarms, but no false negatives, or ‘misses’), and modality (‘how’) by presenting warnings using audio-only and audio combined with visual alerts presented on a HUD. Results from 24 experienced drivers, who negotiated an urban scenario during twelve 6.0-minute drives in a medium-fidelity driving simulator, showed that all warnings were generally rated ‘positively’ (using recognised subjective ‘acceptance’ scales), although acceptance was lower when warnings were delivered at the shortest (2.0s) TTC. In addition, drivers indicated higher confidence in combined audio and visual warnings in all situations. Performance (based on safety margins associated with critical events) varied significantly between warning onset times, with drivers first fixating their gaze on the hazard, taking their foot off the accelerator, applying their foot on the brake, and ultimately bringing the car to a stop further from the pedestrian when warnings were presented at the longest (5.0s) TTC. In addition, drivers applied the brake further from the pedestrian when combined audio and HUD warnings were provided (compared to audio-only), but only at 5.0s TTC. Overall, the study indicates a greater margin of safety associated with the provision of earlier warnings, with no apparent detriment to acceptance, despite relatively high false alarm rates at longer TTCs. Also, that drivers feel more confident with a warning system present, especially when it incorporates auditory and visual elements, even though the visual cue does not necessarily improve hazard localisation or driving performance beyond the advantages offered by auditory alerts alone. Findings are discussed in the context of the design, evaluation and acceptance of active safety systems

    The comparison of auditory, tactile, and multimodal warnings for the effective communication of unexpected events during an automated driving scenario

    Get PDF
    In an automated car, users can fully engage in a distractor task, making it a primary task. Compared to manual driving, drivers can engage in tasks that are difficult to interrupt and of higher demand, the consequences can be a reduced perception of, and an impaired reaction to, warnings. In this study we compared three in-vehicle warnings (auditory, tactile, and auditory-tactile) which were presented during three highly attention capturing tasks (visual, auditory, and tactile) while the user was engaged in a self-driving car scenario, culminating in an emergency brake event where the warning was presented. The novel addition for this paper was that three set paced, attention capturing tasks, as well the three warnings were all designed in a pilot study to have comparable workload and noticeability. This enabled a direct comparison of human performance to be made between each of the attention capturing tasks, which are designed to occupy only one specific modality (auditory, visual or haptic), but remain similar in overall task demand. Results from the study showed reaction times to the tactile warning (for the emergency braking event) were significantly slower compared to the auditory and auditory-tactile (aka multimodal or multisensory) warning. Despite the similar reaction times between the in-vehicle auditory warning and the multimodal warning, the multimodal warning led to a reduced number of missed warnings and fewer false responses. However, the auditory and auditory-tactile warnings were rated significantly more startling than the tactile alone. Our results extend the literature regarding the performance benefits of multimodal warnings by comparing them with in-vehicle auditory warnings in an autonomous driving context. The set-pace attention capturing tasks in this study would be of interest to other researchers to evaluate the interaction in an automated driving context, particularly with hard to interrupt and attention capturing tasks

    Multimodal information presentation for high-load human computer interaction

    Get PDF
    This dissertation addresses the question: given an application and an interaction context, how can interfaces present information to users in a way that improves the quality of interaction (e.g. a better user performance, a lower cognitive demand and a greater user satisfaction)? Information presentation is critical to the quality of interaction because it guides, constrains and even determines cognitive behavior. A good presentation is particularly desired in high-load human computer interactions, such as when users are under time pressure, stress, or are multi-tasking. Under a high mental workload, users may not have the spared cognitive capacity to cope with the unnecessary workload induced by a bad presentation. In this dissertation work, the major presentation factor of interest is modality. We have conducted theoretical studies in the cognitive psychology domain, in order to understand the role of presentation modality in different stages of human information processing. Based on the theoretical guidance, we have conducted a series of user studies investigating the effect of information presentation (modality and other factors) in several high-load task settings. The two task domains are crisis management and driving. Using crisis scenario, we investigated how to presentation information to facilitate time-limited visual search and time-limited decision making. In the driving domain, we investigated how to present highly-urgent danger warnings and how to present informative cues that help drivers manage their attention between multiple tasks. The outcomes of this dissertation work have useful implications to the design of cognitively-compatible user interfaces, and are not limited to high-load applications

    Warning a Distracted Driver: Smart Phone Applications, Informative Warnings and Automated Driving Take-Over Requests

    Get PDF
    abstract: While various collision warning studies in driving have been conducted, only a handful of studies have investigated the effectiveness of warnings with a distracted driver. Across four experiments, the present study aimed to understand the apparent gap in the literature of distracted drivers and warning effectiveness, specifically by studying various warnings presented to drivers while they were operating a smart phone. Experiment One attempted to understand which smart phone tasks, (text vs image) or (self-paced vs other-paced) are the most distracting to a driver. Experiment Two compared the effectiveness of different smartphone based applications (app’s) for mitigating driver distraction. Experiment Three investigated the effects of informative auditory and tactile warnings which were designed to convey directional information to a distracted driver (moving towards or away). Lastly, Experiment Four extended the research into the area of autonomous driving by investigating the effectiveness of different auditory take-over request signals. Novel to both Experiment Three and Four was that the warnings were delivered from the source of the distraction (i.e., by either the sound triggered at the smart phone location or through a vibration given on the wrist of the hand holding the smart phone). This warning placement was an attempt to break the driver’s attentional focus on their smart phone and understand how to best re-orient the driver in order to improve the driver’s situational awareness (SA). The overall goal was to explore these novel methods of improved SA so drivers may more quickly and appropriately respond to a critical event.Dissertation/ThesisDoctoral Dissertation Applied Psychology 201

    In-Vehicle Human Machine Interface: Investigating the Effects of Tactile Displays on Information Presentation in Automated Vehicles

    Get PDF
    Background: Semi-autonomous vehicles still require human drivers to take over when the automated systems can no longer perform the driving task. Objective: The goal of this study was to design and test the effects of six meaningful tactile signal types, representing six driving scenarios (i.e., navigation, speed, surrounding vehicles, over the speed limit, headway reductions, and pedestrian status) respectively, and two pattern durations (lower and higher urgencies), on drivers\u27 perception and performance during automated driving. Methods: Sixteen volunteers participated in an experiment utilizing a medium-fidelity driving simulator presenting vibrotactile signals via 20 tactors embedded in the seat back, pan, and belt. Participants completed four separate driving sessions with 30 tactile signals presented randomly throughout each drive. Reaction times (RT), interpretation accuracy, and subjective ratings were measured. Results: Results illustrated shorter RTs and higher intuitive ratings for higher urgency patterns than lower urgency patterns. Pedestrian status and headway reduction signals were associated with shorter RTs and increased confidence ratings, compared to other tactile signal types. Lastly, among six tactile signals, surrounding vehicle and navigation signal types had the highest interpretation accuracy. Conclusion: These results will be used as preliminary data for future studies that aim to investigate the effects of meaningful tactile displays on automated vehicle takeover performance in complex situations (e.g., urban areas) where actual takeovers are required. The findings of this study will inform the design of next-generation in-vehicle human-machine interfaces

    Effectiveness of Bimodal Versus Unimodal Alerts for Distracted Drivers

    Get PDF
    Twenty-two participants drove a simulated vehicle while engaged in a low or high working memory load task and responded to signals presented in auditory, visual and tactile modalities or their bimodal combinations by pressing on the brake. Signals were designed to be of low or high urgency in both unimodal and bimodal combinations. High urgency and bimodal signals were responded to faster than their low urgency and unimodal counterparts. Fewer bimodal signals were missed overall. This bimodal advantage was particularly significant relative to unimodal signals of low urgency in the high working memory load condition. Together these results indicate that hazard mapping can most effectively be obtained by designing with both the perceived urgency level of the signal and modal plurality in mind

    Cooperative speed assistance : interaction and persuasion design

    Get PDF
    • 

    corecore