12,473 research outputs found

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Presence and rehabilitation: toward second-generation virtual reality applications in neuropsychology

    Get PDF
    Virtual Reality (VR) offers a blend of attractive attributes for rehabilitation. The most exploited is its ability to create a 3D simulation of reality that can be explored by patients under the supervision of a therapist. In fact, VR can be defined as an advanced communication interface based on interactive 3D visualization, able to collect and integrate different inputs and data sets in a single real-like experience. However, "treatment is not just fixing what is broken; it is nurturing what is best" (Seligman & Csikszentmihalyi). For rehabilitators, this statement supports the growing interest in the influence of positive psychological state on objective health care outcomes. This paper introduces a bio-cultural theory of presence linking the state of optimal experience defined as "flow" to a virtual reality experience. This suggests the possibility of using VR for a new breed of rehabilitative applications focused on a strategy defined as transformation of flow. In this view, VR can be used to trigger a broad empowerment process within the flow experience induced by a high sense of presence. The link between its experiential and simulative capabilities may transform VR into the ultimate rehabilitative device. Nevertheless, further research is required to explore more in depth the link between cognitive processes, motor activities, presence and flow

    Externalising moods and psychological states in a cloud based system to enhance a pet-robot and child’s interaction

    Get PDF
    Background:This PATRICIA research project is about using pet robots to reduce pain and anxiety in hospitalized children. The study began 2 years ago and it is believed that the advances made in this project are significant. Patients, parents, nurses, psycholo- gists, and engineers have adopted the Pleo robot, a baby dinosaur robotic pet, which works in different ways to assist children during hospitalization. Methods: Focus is spent on creating a wireless communication system with the Pleo in order to help the coordinator, who conducts therapy with the child, monitor, under- stand, and control Pleo’s behavior at any moment. This article reports how this techno- logical function is being developed and tested. Results: Wireless communication between the Pleo and an Android device is achieved. The developed Android app allows the user to obtain any state of the robot without stopping its interaction with the patient. Moreover, information is sent to a cloud, so that robot moods, states and interactions can be shared among different robots. Conclusions: Pleo attachment was successful for more than 1 month, working with children in therapy, which makes the investment capable of positive therapeutic possibilities. This technical improvement in the Pleo addresses two key issues in social robotics: needing an enhanced response to maintain the attention and engagement of the child, and using the system as a platform to collect the states of the child’s progress for clinical purposes.Peer ReviewedPostprint (published version

    Advances in computational modelling for personalised medicine after myocardial infarction

    Get PDF
    Myocardial infarction (MI) is a leading cause of premature morbidity and mortality worldwide. Determining which patients will experience heart failure and sudden cardiac death after an acute MI is notoriously difficult for clinicians. The extent of heart damage after an acute MI is informed by cardiac imaging, typically using echocardiography or sometimes, cardiac magnetic resonance (CMR). These scans provide complex data sets that are only partially exploited by clinicians in daily practice, implying potential for improved risk assessment. Computational modelling of left ventricular (LV) function can bridge the gap towards personalised medicine using cardiac imaging in patients with post-MI. Several novel biomechanical parameters have theoretical prognostic value and may be useful to reflect the biomechanical effects of novel preventive therapy for adverse remodelling post-MI. These parameters include myocardial contractility (regional and global), stiffness and stress. Further, the parameters can be delineated spatially to correspond with infarct pathology and the remote zone. While these parameters hold promise, there are challenges for translating MI modelling into clinical practice, including model uncertainty, validation and verification, as well as time-efficient processing. More research is needed to (1) simplify imaging with CMR in patients with post-MI, while preserving diagnostic accuracy and patient tolerance (2) to assess and validate novel biomechanical parameters against established prognostic biomarkers, such as LV ejection fraction and infarct size. Accessible software packages with minimal user interaction are also needed. Translating benefits to patients will be achieved through a multidisciplinary approach including clinicians, mathematicians, statisticians and industry partners

    The Effectiveness Of Virtual Humans Vs. Pre-recorded Humans In A Standardized Patient Performance Assessment

    Get PDF
    A Standardized Patient (SP) is a trained actor who portrays a particular illness to provide training to medical students and professionals. SPs primarily use written scripts and additional paper-based training for preparation of practical and board exams. Many institutions use various methods for training such as hiring preceptors for reenactment of scenarios, viewing archived videos, and computer based training. Currently, the training that is available can be enhanced to improve the level of quality of standardized patients. The following research is examining current processes in standardized patient training and investigating new methods for clinical skills education in SPs. The modality that is selected for training can possibly affect the performance of the actual SP case. This paper explains the results of a study that investigates if there is a difference in the results of an SP performance assessment. This difference can be seen when comparing a virtual human modality to that of a pre-recorded human modality for standardized patient training. The sample population navigates through an interactive computer based training module which provides informational content on what the roles of an SP are, training objectives, a practice session, and an interactive performance assessment with a simulated Virtual Human medical student. Half of the subjects interact with an animated virtual human medical student while the other half interacts with a pre-recorded human. The interactions from this assessment are audio-recorded, transcribed, and then graded to see how the two modalities compare. If the performance when using virtual humans for standardized patients is equal to or superior to pre-recorded humans, this can be utilized as a part task trainer that brings standardized patients to a higher level of effectiveness and standardization. In addition, if executed properly, this tool could potentially be used as a part task trainer which could provide savings in training time, resources, budget, and staff to military and civilian healthcare facilities

    Immersive Visualization for Enhanced Computational Fluid Dynamics Analysis

    Get PDF
    Modern biomedical computer simulations produce spatiotemporal results that are often viewed at a single point in time on standard 2D displays. An immersive visualization environment (IVE) with 3D stereoscopic capability can mitigate some shortcomings of 2D displays via improved depth cues and active movement to further appreciate the spatial localization of imaging data with temporal computational fluid dynamics (CFD) results. We present a semi-automatic workflow for the import, processing, rendering, and stereoscopic visualization of high resolution, patient-specific imaging data, and CFD results in an IVE. Versatility of the workflow is highlighted with current clinical sequelae known to be influenced by adverse hemodynamics to illustrate potential clinical utility
    corecore