460 research outputs found

    First evidence that intrinsic fetal heart rate variability exists and is affected by hypoxic pregnancy.

    Get PDF
    KEY POINTS: We introduce a technique to test whether intrinsic fetal heart rate variability (iFHRV) exists and we show the utility of the technique by testing the hypothesis that iFHRV is affected by chronic fetal hypoxia, one of the most common adverse outcomes of human pregnancy complicated by fetal growth restriction. Using an established late gestation ovine model of fetal development under chronic hypoxic conditions, we identify iFHRV in isolated fetal hearts and show that it is markedly affected by hypoxic pregnancy. Therefore, the isolated fetal heart has intrinsic variability and carries a memory of adverse intrauterine conditions experienced during the last third of pregnancy. ABSTRACT: Fetal heart rate variability (FHRV) emerges from influences of the autonomic nervous system, fetal body and breathing movements, and from baroreflex and circadian processes. We tested whether intrinsic heart rate variability (iHRV), devoid of any external influences, exists in the fetal period and whether it is affected by chronic fetal hypoxia. Chronically catheterized ewes carrying male singleton fetuses were exposed to normoxia (n = 6) or hypoxia (10% inspired O2 , n = 9) for the last third of gestation (105-138 days of gestation (dG); term ∼145 dG) in isobaric chambers. At 138 dG, isolated hearts were studied using a Langendorff preparation. We calculated basal intrinsic FHRV (iFHRV) indices reflecting iFHRV's variability, predictability, temporal symmetry, fractality and chaotic behaviour, from the systolic peaks within 15 min segments in each heart. Significance was assumed at P < 0.05. Hearts of fetuses isolated from hypoxic pregnancy showed approximately 4-fold increases in the Grid transformation as well as the AND similarity index (sgridAND) and a 4-fold reduction in the scale-dependent Lyapunov exponent slope. We also detected a 2-fold reduction in the Recurrence quantification analysis, percentage of laminarity (pL) and recurrences, maximum and average diagonal line (dlmax, dlmean) and the Multiscale time irreversibility asymmetry index. The iHRV measures dlmax, dlmean, pL and sgridAND correlated with left ventricular end-diastolic pressure across both groups (average R2  = 0.38 ± 0.03). This is the first evidence that iHRV originates in fetal life and that chronic fetal hypoxia significantly alters it. Isolated fetal hearts from hypoxic pregnancy exhibit a time scale-dependent higher complexity in iFHRV.British Heart Foundatio

    Symbolic Dynamics Analysis: a new methodology for foetal heart rate variability analysis

    Get PDF
    Cardiotocography (CTG) is a widespread foetal diagnostic methods. However, it lacks of objectivity and reproducibility since its dependence on observer's expertise. To overcome these limitations, more objective methods for CTG interpretation have been proposed. In particular, many developed techniques aim to assess the foetal heart rate variability (FHRV). Among them, some methodologies from nonlinear systems theory have been applied to the study of FHRV. All the techniques have proved to be helpful in specific cases. Nevertheless, none of them is more reliable than the others. Therefore, an in-depth study is necessary. The aim of this work is to deepen the FHRV analysis through the Symbolic Dynamics Analysis (SDA), a nonlinear technique already successfully employed for HRV analysis. Thanks to its simplicity of interpretation, it could be a useful tool for clinicians. We performed a literature study involving about 200 references on HRV and FHRV analysis; approximately 100 works were focused on non-linear techniques. Then, in order to compare linear and non-linear methods, we carried out a multiparametric study. 580 antepartum recordings of healthy fetuses were examined. Signals were processed using an updated software for CTG analysis and a new developed software for generating simulated CTG traces. Finally, statistical tests and regression analyses were carried out for estimating relationships among extracted indexes and other clinical information. Results confirm that none of the employed techniques is more reliable than the others. Moreover, in agreement with the literature, each analysis should take into account two relevant parameters, the foetal status and the week of gestation. Regarding the SDA, results show its promising capabilities in FHRV analysis. It allows recognizing foetal status, gestation week and global variability of FHR signals, even better than other methods. Nevertheless, further studies, which should involve even pathological cases, are necessary to establish its reliability.La Cardiotocografia (CTG) è una diffusa tecnica di diagnostica fetale. Nonostante ciò, la sua interpretazione soffre di forte variabilità intra- e inter- osservatore. Per superare tali limiti, sono stati proposti più oggettivi metodi di analisi. Particolare attenzione è stata rivolta alla variabilità della frequenza cardiaca fetale (FHRV). Nel presente lavoro abbiamo suddiviso le tecniche di analisi della FHRV in tradizionali, o lineari, e meno convenzionali, o non-lineari. Tutte si sono rivelate efficaci in casi specifici ma nessuna si è dimostrata più utile delle altre. Pertanto, abbiamo ritenuto necessario effettuare un’indagine più dettagliata. In particolare, scopo della tesi è stato approfondire una specifica metodologia non-lineare, la Symbolic Dynamics Analysis (SDA), data la sua notevole semplicità di interpretazione che la renderebbe un potenziale strumento di ausilio all’attività clinica. Sono stati esaminati all’incirca 200 riferimenti bibliografici sull’analisi di HRV e FHRV; di questi, circa 100 articoli specificamente incentrati sulle tecniche non-lineari. E’ stata condotta un’analisi multiparametrica su 580 tracciati CTG di feti sani per confrontare le metodologie adottate. Sono stati realizzati due software, uno per l’analisi dei segnali CTG reali e l’altro per la generazione di tracciati CTG simulati. Infine, sono state effettuate analisi statistiche e di regressione per esaminare le correlazioni tra indici calcolati e parametri di interesse clinico. I risultati dimostrano che nessuno degli indici calcolati risulta più vantaggioso rispetto agli altri. Inoltre, in accordo con la letteratura, lo stato del feto e le settimane di gestazione sono parametri di riferimento da tenere sempre in considerazione per ogni analisi effettuata. Riguardo la SDA, essa risulta utile all’analisi della FHRV, permettendo di distinguere – meglio o al pari di altre tecniche – lo stato del feto, la settimana di gestazione e la variabilità complessiva del segnale. Tuttavia, sono necessari ulteriori studi, che includano anche casi di feti patologici, per confermare queste evidenze

    Fuzzy Detection of Fetal Distress for Antenatal Monitoring in Pregnancy with Fetal Growth Restriction and Normal

    Get PDF
    Monitoring of fetal cardiac activity is a well-known approach to the assessment of fetal health. The fetal heart rate can be measured using conventional cardiotocography (CTG). However, this method does not provide the beat-to-beat variability of the fetal heart rate because of the averaging nature of the autocorrelation function that is used to estimate the heart rate from a set of heart beats enclosed in the autocorrelation function window. Therefore, CTG presents important limitations for fetal arrhythmia diagnosis. CTG has a high rate of false positives and poor inter- and intra-observer reliability, such that fetal status and the perinatal outcome cannot be predicted reliably. Non-invasive fetal electrocardiography (NI-FECG) is a promising low-cost and non-invasive continuous fetal monitoring alternative. However, there is little that has been published to date on the clinical usability of NI-FECG. The chapter will include data on the accurate diagnosing of fetal distress based on heart rate variability (HRV). A fuzzy logic inference system was designed based on a set of fetal descriptors selected from the HRV responses, as evident descriptors of fetal well-being, to increase the sensitivity and specificity of detection. This approach is found to be rather prospective for the subsequent clinical implementation

    A Comprehensive Review of Techniques for Processing and Analyzing Fetal Heart Rate Signals

    Get PDF
    The availability of standardized guidelines regarding the use of electronic fetal monitoring (EFM) in clinical practice has not effectively helped to solve the main drawbacks of fetal heart rate (FHR) surveillance methodology, which still presents inter- and intra-observer variability as well as uncertainty in the classification of unreassuring or risky FHR recordings. Given the clinical relevance of the interpretation of FHR traces as well as the role of FHR as a marker of fetal wellbeing autonomous nervous system development, many different approaches for computerized processing and analysis of FHR patterns have been proposed in the literature. The objective of this review is to describe the techniques, methodologies, and algorithms proposed in this field so far, reporting their main achievements and discussing the value they brought to the scientific and clinical community. The review explores the following two main approaches to the processing and analysis of FHR signals: traditional (or linear) methodologies, namely, time and frequency domain analysis, and less conventional (or nonlinear) techniques. In this scenario, the emerging role and the opportunities offered by Artificial Intelligence tools, representing the future direction of EFM, are also discussed with a specific focus on the use of Artificial Neural Networks, whose application to the analysis of accelerations in FHR signals is also examined in a case study conducted by the authors

    Study of Heart Rate Variability in Bipolar Disorder: Linear and Non-Linear Parameters during Sleep.

    Get PDF
    The aim of the study is to define physiological parameters and vital signs that may be related to the mood and mental status in patients affected by bipolar disorder. In particular we explored the autonomic nervous system through the analysis of the heart rate variability. Many different parameters, in the time and in the frequency domain, linear and non-linear were evaluated during the sleep in a group of normal subject and in one patient in four different conditions. The recording of the signals was performed through a wearable sensorized T-shirt. Heart rate variability (HRV) signal and movement analysis allowed also obtaining sleep staging and the estimation of REM sleep percentage over the total sleep time. A group of eight normal females constituted the control group, on which normality ranges were estimated. The pathologic subject was recorded during four different nights, at time intervals of at least 1 week, and during different phases of the disturbance. Some of the examined parameters (MEANNN, SDNN, RMSSD) confirmed reduced HRV in depression and bipolar disorder. REM sleep percentage was found to be increased. Lempel–Ziv complexity and sample entropy, on the other hand, seem to correlate with the depression level. Even if the number of examined subjects is still small, and the results need further validation, the proposed methodology and the calculated parameters seem promising tools for the monitoring of mood changes in psychiatric disorders
    corecore