19,436 research outputs found

    Performance of active multicast congestion control

    Get PDF
    This paper aims to provide insight into the behavior of congestion control mechanisms for reliable multicast protocols. A multicast congestion control based on active networks has been proposed and simulated using ns-2 over a network topology obtained using the Tiers tool. The congestion control mechanism has been simulated under different network conditions and with different settings of its configuration parameters. The objective is to analyze its performance and the impact of the different configuration parameters on its behavior. The simulation results show that the performance of the protocol is good in terms of delay and bandwidth utilization. The compatibility of the protocol with TCP flows has not been demonstrated, but the simulations performed show that by altering the parameter settings, the proportion of total bandwidth taken up by the two types of flow, multicast and TCP, may be modified.Publicad

    Distributed QoS Guarantees for Realtime Traffic in Ad Hoc Networks

    Get PDF
    In this paper, we propose a new cross-layer framework, named QPART ( QoS br>rotocol for Adhoc Realtime Traffic), which provides QoS guarantees to real-time multimedia applications for wireless ad hoc networks. By adapting the contention window sizes at the MAC layer, QPART schedules packets of flows according to their unique QoS requirements. QPART implements priority-based admission control and conflict resolution to ensure that the requirements of admitted realtime flows is smaller than the network capacity. The novelty of QPART is that it is robust to mobility and variances in channel capacity and imposes no control message overhead on the network

    Exploiting the Capture Effect to Enhance RACH Performance in Cellular-Based M2M Communications

    Get PDF
    Cellular-based machine-to-machine (M2M) communication is expected to facilitate services for the Internet of Things (IoT). However, because cellular networks are designed for human users, they have some limitations. Random access channel (RACH) congestion caused by massive access from M2M devices is one of the biggest factors hindering cellular-based M2M services because the RACH congestion causes random access (RA) throughput degradation and connection failures to the devices. In this paper, we show the possibility exploiting the capture effects, which have been known to have a positive impact on the wireless network system, on RA procedure for improving the RA performance of M2M devices. For this purpose, we analyze an RA procedure using a capture model. Through this analysis, we examine the effects of capture on RA performance and propose an Msg3 power-ramping (Msg3 PR) scheme to increase the capture probability (thereby increasing the RA success probability) even when severe RACH congestion problem occurs. The proposed analysis models are validated using simulations. The results show that the proposed scheme, with proper parameters, further improves the RA throughput and reduces the connection failure probability, by slightly increasing the energy consumption. Finally, we demonstrate the effects of coexistence with other RA-related schemes through simulation results
    corecore