522 research outputs found

    Mechanism of N-Type Inactivation in Shaker Potassium Channels

    Full text link
    Hyperexcitabilité est l'un des changements les plus importants observés dans de nombreuses maladies neuro-dégénératives telles que la sclérose latérale amyotrophique (SLA) et la maladie d'Alzheimer. De nombreuses recherches études se sont concentrées sur la réduction de l'hyperexcitabilité, soit en inactivant les canaux sodiques ce qui va réduire la génération de potentiels d'action, soit en prolongeant l'ouverture des canaux potassiques ce qui va qui ramener la membrane à son état de repos et réduire l’activité des neurones. Ainsi, pour cibler l'hyperexcitabilité, il faut tout d’abord comprendre les différents aspects de la fonction des canaux ioniques au niveau. Les objectifs des travaux présentés dans cette thèse consistent à déterminer le mécanisme d'inactivation dans les canaux potassiques Shaker. Les canaux Shaker Kv s'inactivent rapidement pour culminer le potentiel d'action et maintenir l'homéostasie des cellules excitables. L'inactivation de type N est causée par les 46 premiers acides aminés situés de l'extrémité N-terminale du canal, encore appelé, peptide d'inactivation (IP). De nombreuses études mutationnelles ont caractérisé l'inactivation de type N au niveau fonctionnel, cependant, la position de l'IP à l'état de repos et leur transition lors de l'inactivation est encore débattue. L'objectif de la première étude consiste à évaluer le mouvement des IP pendant leur inactivation à l'aide de la fluorométrie en voltage imposé. En insérant un acide aminé non naturel, la 3-[(6-acétyl-2-naphtalényl) amino]-L-alanine (Anap), qui est sensible aux changements d'environnement, nous avons identifié séparément les mouvements de la boule et de la chaîne. Nos données suggèrent que l'inactivation de type N se produit dans un mouvement biphasique en libérant d'abord le IP, ce qui va bloquer le pore du côté cytoplasmique. Pour affiner davantage la position de repos des IP, nous avons utilisé le transfert d'énergie de résonance à base de lanthanide et le métal de transition FRET. Nous proposons que le IP se situe dans la fenêtre formée par le canal et le domaine T1, interagissant avec les résidus acides-aminés du domaine T1. Dans notre deuxième étude, nous avons montré que le ralentissement de l'inactivation de type N observé dans la première étude est causée par une expression élevée des canaux Shaker. En effet, l'extrémité C-terminale du canal interagit avec les protéines d'échafaudage associées à la membrane pour la formation d'amas. Nous avons aussi montré qu'en tronquant les quatre derniers résidus C-terminaux impliqués dans la formation des amas, nous empêchons également le ralentissement de la cinétique d'inactivation dans les canaux Shaker. Nous avons également démontré que l'inactivation lente de type N n'est pas affectée par l'accumulation des cations potassiques [K+] externe ou toute diaphonie entre les sous-unités voisines. Cette étude élucide non seulement la cause du ralentissement de l'inactivation, mais montre également que les canaux modifient leur comportement en fonction des conditions d'expression. Les résultats trouvés au niveau moléculaire ne peuvent donc pas toujours être extrapolés au niveau cellulaire.Hyperexcitability of neurons is a major symptom observed in many degenerative diseases such as ALS and Alzheimer’s disease. A lot of research is focused on reducing hyperexcitability, either by inactivating sodium channels that will reduce the generation of action potentials, or by prolonging the opening of potassium channels which will help to bring the membrane back to resting state and thus, reduce firing frequency of neurons. At the molecular level, it is important to understand different aspects of ion channel function to target hyperexcitability. The aim of this thesis was to investigate in two projects the inactivation mechanism in Shaker potassium channels. Shaker Kv channels inactivate rapidly to culminate the action potential and maintain the homeostasis of excitable cells. The so-called N-type inactivation is caused by the first 46 amino acids of the N-terminus of the channel, known as the inactivation peptide (IP). Numerous mutational studies have characterized N-type inactivation functionally, however, the position of the IP in the resting state and its transition during inactivation is still debated. The aim of the first project was to track the movement of IP during inactivation using voltage clamp fluorometry. By inserting an unnatural amino acid, 3-[(6-acetyl-2-naphthalenyl) amino]-L-alanine (Anap), which is sensitive to changes in environment, we identified the movements of ball and chain separately. Our data suggests that N-type inactivation occurs in a biphasic movement by first releasing the IP, which then blocks the pore from the cytoplasmic side. To further narrow down the resting position of the inactivation peptide, we used Lanthanide-based Resonance Energy transfer and transition metal FRET. We propose that the inactivation peptide is located in the window formed by the channel and the T1 domain, interacting with the acidic residues of the T1 domain. In a follow-up study, we explored the reason underlying slow inactivation kinetics observed during the study of N-type inactivation in the first project. High expression of Shaker channels results in slowing of the N-type inactivation. The C-terminus of the channel interacts with membrane associated scaffold proteins for cluster formation. In this study, we have shown that by truncating the last four C-terminal residues involved in cluster formation, and hence preventing channel clustering, we also prevent slowing of the inactivation kinetics in Shaker channels. We also showed that slow N-type inactivation is not affected by accumulation of external [K+] or any crosstalk between the neighboring subunits. The second project not only elucidates the cause of the inactivation slow-down but illustrates that the channels alter their behavior dependent on the expression conditions. Results found on the molecular level can thus not always be extrapolated to the cellular level

    What are the mechanisms for analogue and digital signalling in the brain?

    Get PDF
    International audienceSynaptic transmission in the brain generally depends on action potentials. However, recent studies indicate that subthreshold variation in the presynaptic membrane potential also determines spike-evoked transmission. The informational content of each presynaptic action potential is therefore greater than initially expected. The contribution of this synaptic property, which is a fast (from 0.01 to 10 s) and state-dependent modulation of functional coupling, has been largely underestimated and could have important consequences for our understanding of information processing in neural networks. We discuss here how the membrane voltage of the presynaptic terminal might modulate neurotransmitter release by mechanisms that do not involve a change in presynaptic Ca2+ influx

    Cellular magnesium acquisition : an anomaly in embryonic cation homeostasis

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Experimental and Molecular Pathology 83 (2007): 224-240, doi:10.1016/j.yexmp.2007.03.007.The intracellular dominance of magnesium ion makes clinical assessment difficult despite the critical role of Mg++ in many key functions of cells and enzymes. There is general consensus that serum Mg++ levels are not representative of the growing number of conditions for which magnesium is known to be important. There is no consensus method or sample source for testing for clinical purposes. High intracellular Mg++ in vertebrate embryos results in part from interactions of cations which influence cell membrane transport systems. These are functionally competent from the earliest stages, at least transiently held over from the unfertilized ovum. Kinetic studies with radiotracer cations, osmolar variations, media lacking one or more of the four biological cations, Na+, Mg++, K+, and Ca++, and metabolic poison 0.05 mEq/L NaF, demonstrated: (1) all four cations influence the behavior of the others, and (2) energy is required for uptake and efflux on different time scales, some against gradient. Na+ uptake is energy dependent against an efflux gradient. The rate of K+ loss is equal with or without fluoride, suggesting a lack of an energy requirement at these stages. Ca++ efflux took twice as long in the presence of fluoride, likely due in part to intracellular binding. Mg++ is anomalous in that early teleost vertebrate embryos have an intracellular content exceeding the surrounding sea water, an isolated unaffected yolk compartment, and a clear requirement for energy for both uptake and efflux. The physiological, pathological, and therapeutic roles of magnesium are poorly understood. This will change: (1) when 28Mg is once again generally available at a reasonable cost for both basic research and clinical assessment, and (2) when serum or plasma levels are determined simultaneously with intracellular values, preferably as part of complete four cation profiles. Atomic absorption spectrophotometry, energy-dispersive x-ray analysis, and inductively coupled plasma emission spectroscopy on sublingual mucosal and peripheral blood samples are potential methods of value for coordinated assessments.AEC Grant No. 134

    Resistance to action potential depression of a rat axon terminal in vivo

    Get PDF

    Vliv stochastického chování iontových kanálů na přenos signálu a informace na excitabilních neuronálních membránách

    Get PDF
    Stochastické chování napěťově řízených iontových kanálů způsobuje fluktuace v konduktanci a napětí na neuronálních membránách, čímž přispívá k všudypřítomnému šumu v nervové soustavě. Přestože se tento fenomén vyskytuje i na jiných částech neuronu, zde jsme se soustředili pouze na axon a na způsob, jakým neuronální šum ovlivňuje axonální vstupně-výstupní charakteristiky. Problematika byla analyzována za použití nového výpočetního kompartmentálního modelu, který jsme naprogramovali v prostředí Matlab, a který je založený na matematickém Hodgkin-Huxley formalismu s kanálovým šumem implementovaným pomocí rozšířené metody Markovových řetězců Monte Carlo. Model byl důkladně ověřen k tomu, aby věrně simuloval savčí axon CA3 neuronu. Na základě našich simulací jsme kvantitativně potvrdili dosavadní poznatek, že neuronální šum je výraznější na membránách s nižším počtem Na+ a K+ kanálů, a že výrazně zvyšuje variabilitu doby propagace akčního potenciálu (AP) podél axonu, čímž i snižuje časovou preciznost AP. Simulace analyzující efekt demyelinizace axonu a axonálního průměru korelovala s dřívějšími poznatky zmíněnými v Literatuře. Dále jsme se soustředili na vzorce akčních potenciálů a jak je jejich propagace ovlivněna intervaly mezi nimi (ISI, inter-spike intervals). Zjistili jsme, že AP vypálené s krátkými...The stochastic behavior of voltage-gated ion channels causes fluctuations of conductances and voltages across neuronal membranes, contributing to the neuronal noise which is ubiquitous in the nervous system. While this phenomenon can be observed also on other parts of the neuron, here we concentrated on the axon and the way the channel noise influences axonal input-output characteristics. This was analysed by working with our newly created computational compartmental model, programmed in Matlab environment, built up using the Hodgkin-Huxley mathematical formalism and channel noise implemented via extended Markov Chain Monte Carlo method. The model was thoroughly verified to simulate plausibly a mammalian axon of CA3 neuron. Based on our simulations, we confirmed quantitatively the findings that the channel noise is the most prominent on membranes with smaller number of Na+ and K+ channels and that it majorly increases the variability of travel times of action potentials (APs) along axons, decreasing thereby the temporal precision of APs. The simulations analysing the effect of axonal demyelination and axonal diameter correlated well with other finding referred in Literature. We further focused on spike pattern and how is its propagation influenced by inter-spike intervals (ISI). We found, that APs fired...Department of PhysiologyKatedra fyziologieFaculty of SciencePřírodovědecká fakult

    Twenty-Fifth Annual Meeting February 23–25, 1981 Denver Hilton, Denver, Colorado Monday February 23, 1981. 9 a.m.–12 noon, Part 2

    Get PDF

    Characterization of the Central Cavity of a Potassium Channel: Helix Dipoles, Conformational Plasticity and Inhibition

    Get PDF
    Potassium channels are important for regulating the flow of potassium ions across semi-permeable cell membranes in an efficient and selective manner. Potassium channels form a conduction pore comprised of a selectivity filter responsible for the strong preference for potassium, and a water-filled central cavity that contributes to rapid conduction by lowering the energy barrier for potassium ions to cross the low dielectric membrane environment. In the high resolution structure of the potassium channel KcsA, a hydrated potassium ion was observed in the central cavity. It was proposed that some electrostatic stabilization for this potassium ion may come from the backbone of nearby α- helix C-termini, through the helix dipole effect. We studied the role of helix dipoles in KcsA using protein semisynthesis in order to modify the backbone of KcsA and reduce the dipoles of the implicated helix termini. The modified protein was studied by both X-ray crystallography and electrophysiology, demonstrating that the pore helix dipoles may play an important role in potassium conductance. In the course of these experiments, a new conformation for the KcsA cavity was discovered: a phenylalanine (Phe) from each subunit flipped into the center of the cavity, the cavity ion was no longer observed, and a new non-peptidic density extended into the cavity through lateral openings exposed by the conformational change of the Phe. Subsequent structural studies identified conditions that induce or prevent this conformational change. In particular, mutations were incorporated into KcsA that make the protein less likely to enter the alternative conformation, while not greatly affecting potassium conductance. Crystal structures of KcsA in complex with cavity blocking small molecules revealed that certain inhibitors bind to the cavity in its alternative conformation, and electrophysiology confirmed inhibition by one such molecule in the membrane environment. A sequence alignment between KcsA and several human potassium channels identified a subset of channels where this mode of cavity block may be conserved, including BK and HERG channels. Thus, this new conformation of block could have important implications for the pharmacology of human potassium channels. This work furthers our understanding of electrostatic interactions, structural plasticity, and a new mode of action for a family of inhibitors, within the cavity of KcsA. The study of helix dipoles has relevance for the function of a wide range of proteins, and characterization of conformational dependent cavity block has particular relevance to some pharmacologically relevant human potassium channels
    corecore