250 research outputs found

    Organic electrode coatings for next-generation neural interfaces

    Get PDF
    Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however, several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes

    Carbon Fiber-based Microelectrodes and Microbiosensors

    Get PDF

    Development Of Carbon Based Neural Interface For Neural Stimulation/recording And Neurotransmitter Detection

    Get PDF
    Electrical stimulation and recording of neural cells have been widely used in basic neuroscience studies, neural prostheses, and clinical therapies. Stable neural interfaces that effectively communicate with the nervous system via electrodes are of great significance. Recently, flexible neural interfaces that combine carbon nanotubes (CNTs) and soft polymer substrates have generated tremendous interests. CNT based microelectrode arrays (MEAs) have shown enhanced electrochemical properties compared to commonly used electrode materials such as tungsten, platinum or titanium nitride. On the other hand, the soft polymer substrate can overcome the mechanical mismatch between the traditional rigid electrodes (or silicon shank) and the soft tissues for chronic use. However, most fabrication techniques suffer from low CNT yield, bad adhesion, and limited controllability. In addition, the electrodes were covered by randomly distributed CNTs in most cases. In this study, a novel fabrication method combining XeF2 etching and parylene deposition was presented to integrate the high quality vertical CNTs grown at high temperature with the heat sensitive parylene substrate in a highly controllable manner. Lower stimulation threshold voltage and higher signal to noise ratio have been demonstrated using vertical CNTs bundles compared to a Pt electrode and other randomly distributed CNT films. Adhesion has also been greatly improved. The work has also been extended to develop cuff shaped electrode for peripheral nerve stimulation. Fast scan cyclic voltammetry is an electrochemical detection technique suitable for in-vivo neurotransmitter detection because of the miniaturization, fast time response, good sensitivity and selectivity. Traditional single carbon fiber microelectrode has been limited to single detection for in-vivo application. Alternatively, pyrolyzed photoresist film (PPF) is a good candidate for this application as they are readily compatible with the microfabrication process for precise fabrication of microelectrode arrays. By the oxygen plasma treatment of photoresist prior to pyrolysis, we obtained carbon fiber arrays. Good sensitivity in dopamine detection by this carbon fiber arrays and improved adhesion have been demonstrated

    Implantable Electrodes with Carbon Nanotube Coatings

    Get PDF

    Carbon Nanotubes as Suitable Interface for Improving Neural Recordings

    Get PDF
    In the last decades, system neuroscientists around the world have dedicated their research to understand how neuronal networks work and how they malfunction in various diseases. Furthermore in the last years we have seen a progressively increased interaction of brain networks with external devices either for the use of brain computer interfaces or through the currently extended brain stimulation (e.g. transcranial magnetic stimulation) for therapy. Both techniques have evidenced even more the need for a better understanding of neuronal networks. These studies have resulted in the development of different strategies to understand the ongoing neuronal activity, such as fluorescence microscopy for genetic labelling and optogenetic techniques, imaging techniques, or the recording/stimulation with increasingly large numbers of electrodes in the whole brain or in both cell cultured neurons and slice preparations. It is in these last two areas where the technology developed on microelectrode arrays, commonly called multi-electrode arrays (MEAs), has become important over other technologie

    Carbon-based transparent microelectrodes for optical investigation and electrophysiology

    Get PDF
    The goal of this work was to develop carbon based transparent electrodes for advancement of microelectrode array (MEA) technology by allowing the possibility of combining optical methods with classical electrophysiology. Recent years have seen a surge of interest in novel methods such as optogenetics and calcium imaging with the focus on understanding the complex neuronal networks. The conventional microelectrode materials obstruct the optical access, which is from the substrate side with an inverted microscope, and this limitation is overcome by using carbon materials. This work was focused on three main materials - carbon nanostructures, graphene and graphene/PEDOT:PSS (poly(3,4- ethylenedioxythiophene)). The transparency often comes at the cost of high electrochemical impedance. This challenge was tackled by using a novel combination of chemical vapour deposited (CVD) graphene and PEDOT:PSS. Carbon nanostructures were grown at 550 °C by CVD with acetylene as the carbon source. The morphology was studied by scanning electron microscope (SEM) and the presence of nanostructures mixed with amorphous carbon confirmed by Raman spectroscopy. The semitransparent nature was revealed by UV-Vis measurements. The electrochemical impedance was in the acceptable range for electrophysiological recordings. The functionality of the carbon nanostructure microelectrodes was confirmed by recording electrogenic signals from cardiomyocytes where the optical inspection of the cells through the semitransparent microelectrodes was possible. The mechanical robustness and biocompatibility was revealed by studying the electrode-cell ultrastructure. Graphene was grown by CVD with methane as the carbon source and integrated in the MEA fabrication process. The largely single layer graphene was investigated with SEM and Raman spectroscopy. The excellent transparency over the entire microelectrode was revealed by optical transmittance measurements. The graphene microelectrodes displayed high electrochemical impedance which led to high noise during electrophysiology. The functionality of the transparent graphene mircoelectrodes was checked with cardiomyocytes where high amplitude signals were detected similar to recording with standard electrodes, however, the smaller amplitude signals went unrecorded owing to the high noise. Graphene/PEDOT:PSS microelectrodes were fabricated by electrodeposition of the conducting polymer PEDOT:PSS on graphene microelectrodes. Optical microscopy revealed that PEDOT:PSS followed the graphene surface and the continuous coverage of the latter by the former reduced to sparse coverage with decreasing amount of PEDOT:PSS. Raman spectroscopy, especially in the case of lower PEDOT:PSS amounts, revealed the presence of PEDOT:PSS on regions which appeared transparent optically. This information was crucial in understanding the electrodeposition mechanism. The electrochemical impedance was found to be comparable with the commercially available TiN microelectrodes and the applicability was tested with cardiomyocytes. Optical imaging was possible through the transparent microelectrodes. An optimum balance between the optical transparency and electrochemical impedance was obtained which allows flexibility in producing microelectrodes for a wide range of applications. This work presents a comprehensive view on carbon based transparent microelectrodes for novel applications employing combinations of electro- and opto-physiology. The electrodes fabricated in this work are expected to go a long way in assistance with decoding the complex biological systems and provide insights on the single cell level

    Doctor of Philosophy

    Get PDF
    dissertationThe development of devices to electrically interact with the brain is a challenging task that could potentially restore motion to paralyzed patients and sight to those with profound blindness. Neural engineers have designed many types of microelectrode arrays (MEAs) with this challenge in mind. These MEAs can be implanted into brain tissue to both record neural signals and electrically stimulate neurons with high selectivity and spatial resolution. Implanted MEAs have allowed patients to control of a variety of prosthetic devices in clinical trials, but the longevity of such motor prostheses is limited to a few years. Performance decreases over time as MEAs lose the ability to record neuronal signals, preventing their widespread clinical use. Microstimulation via intracortical MEAs has also not achieved broad clinical implementation. While microstimulation for the restoration of vision is promising, human clinical trials are needed. Chronic in vivo functionality assays in model systems will provide key insight to facilitate such trials. There are three goals that may help address insufficient MEA longevity, as well as provide insight on microstimulation functionality. First, thorough characterizations of how performance decreases over time, both with and without stimulation, will be needed. Next, factors that affect the chronic performance of microstimulating MEAs must be further investigated. Finally, intervention strategies can be designed to mitigate these factors and improve long term MEA performance. This dissertation takes steps towards meeting these goals by means of three studies. First, the chronic performance of intracortically implanted recording and stimulating MEAs is examined. It is found that while performance of implanted MEAs in feline cortex is dynamic, catastrophic device failure does not occur with microstimulation. Next, a variety of factors that affect microstimulation studies are investigated. It is found that many factors, including device iv damage, anesthesia depth, the application of microstimulation, and the use of impedance as a reporter play a role in observations of performance variability. Finally, a promising intervention strategy, a carbon nanotube coating, is chronically tested in vivo, indicating that carbon nanotubes do not cause catastrophic device failure and may impart benefits to future generations of MEAs

    Modulation of in Vivo Neural Network Activity with Electrochemically Controlled Delivery of Neuroactive Molecules

    Get PDF
    Neural interface technologies with implantable microelectrode arrays hold great promise for treating neural injuries or disorders. On neural electrode surfaces, conducting polymers can be electropolymerization with negatively charged molecules incorporated. When the polymer is reduced with negative current, dopant molecules are released from the polymer. This feature can be utilized to deliver neural transmitters and modulators from the electrodes to alter neural network activity. Previously, release of CNQX (6-cyano-7-nitroquinoxaline-2,3-dione), an AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid) receptor antagonist in hippocampal neuron culture effectively suppressed local neural activity in a transient manner. In this study, we further advance this technology by characterizing the drug loading and release capacity from microelectrodes, expanding the range of candidate dopants, and demonstrating in vivo effectiveness in rat somatosensory (S1) barrel cortex. Firstly, to quantify the concentration of released drug, fluorescent model molecule was used and quantitatively assessed in a real time imaging system. Stimulation amplitude was varied to determine the amount of released drug from microelectrodes. Secondly, only negatively charged drugs have been effectively released in the past. In this study, zwitterionic transmitter γ-Aminobutyric acid (GABA) was successfully delivered with the technique, greatly expanding the applicable range for the technique. Finally, we used evoked response from barrel cortex to evaluate the release of DNQX (6,7-dinitroquinoxaline-2,3-dione), an analog of CNQX. The neural activity of barrel cortex reliably represents sensory stimuli from whiskers, hence provides an excellent in vivo network model for evaluating our neurochemical release system. Neural activity from multi-whisker stimulation was immediately and locally suppressed by released DNQX for one to six seconds, demonstrating the high spatial-temporal resolution of the technique. Furthermore, weaker activities were nearly abolished by released DNQX whilst stronger activities were less influenced, because the strong over-saturated neural input can only be partially antagonized. The system demonstrates successful modulation of neural network activity in a highly controllable manner. With the ease of being incorporated in existing neural implants without increasing the volume or complexity, this technology may find use in a wide range of neuroscience studies and potentially therapeutic devices

    Carbon Fiber Microelectrode Arrays for Neuroprosthetic and Neuroscience Applications.

    Full text link
    The aim of this work is to develop, validate, and characterize the insertion mechanism, tissue response, and recording longevity of a new high-density carbon fiber microelectrode array. This technology was designed to significantly improve the field of penetrating microelectrodes while simultaneously accommodating the variable needs of both neuroscientists and neural engineers. The first study presents the fabrication and insertion dynamics of a high-density carbon fiber electrode array using a dual sided printed circuit board platform. The use of this platform has pushed electrode density to limits not seen in other works. This necessitated the use of an encapsulation method that served to temporarily stiffen the fibers during insertion, but did not enter the brain as many other shuttles do for other probe designs. The initial findings in this work informed the development of an even higher density array using a silicon support structure as a backbone. The second study reports on the tissue reaction of chronically implanted carbon fiber electrode arrays as compared to silicon electrodes. Due to their smaller footprint, the reactive response to carbon fibers should be greatly attenuated, if not non-existent. Results show a scarring response to the implanted silicon electrode with elevated astrocyte and microglia activity coupled to a local decrease in neuronal density. The area implanted with the carbon fiber electrodes showed a varied response, from no detectable increase in astrocytic or microglial activity to an elevated activation of both cell types, but with no detectable scars. Neuronal density in the carbon fiber implant region was unaffected. The data demonstrates that the small carbon fiber profile, even in an array configuration, shows an attenuated reactive response with no visible scaring. The final study reports on the viability of chronically implanted high-density carbon fiber arrays as compared to more traditional silicon planar arrays with comparable site sizes. While most new probe technologies or designs are able to demonstrate proof of concept functionality in acute preparations, very few show the ability to record chronic unit activity. This study aims to provide a comprehensive analysis of electrophysiology data collected over implant durations ranging from 3 – 5 months.PhDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111557/1/parasp_1.pd
    • …
    corecore