38,006 research outputs found

    Computational approaches to protein structure prediction

    Get PDF
    One of the most promising problems in bioinformatics is still the protein folding problem which tries to predict the native 3D fold (shape) of a protein from its amino acid sequence. The native fold information of proteins provide to understand their functions in the cell. In order to determine the 3D structure of the huge amount of protein sequence, the development of efficient computational techniques is needed. The thesis studies the computational approaches to provide new solutions for the secondary structure prediction of proteins. The 3D structure of a protein is composed of the secondary structure elements: α-helices, β-sheets, β-turns, and loops. The secondary structures of proteins have a high impact on the formation of their 3D structures. Two subproblems within secondary structure prediction have been studied in this thesis. The first study is for identifying the structural classes (all-α, all-β, α/β, α+β) of proteins from their primary sequences. The structural class information could provide a rough description of a protein’s 3D structure due to the high effects of the secondary structures on the formation of 3D structure. This approach assembles the statistical classification technique, Support Vector Machines (SVM), and the variations of amino acid composition information. The performance results demonstrate that the utilization of neighborhood information between amino acids and the high classification ability of the SVM provides a significant improvement for the structural classification of proteins. The second study in thesis is for predicting one of the secondary structure element, β-turns, through primary sequence. The formation of β-turns has been thought to have critical roles as much as other secondary structures in the protein folding pathway. Hence, Hidden Markov Models (HMM) and Artificial Neural Networks (ANN) have been developed to predict the location and type of β-turns from its amino acid sequence. The neighborhood information between β-turns and other secondary structures has been introduced by designing the suitable HMM topologies. One of the amino acid similarity matrices is used to give the evolutionary information between proteins. Although applying HMMs and usage of amino acid similarity matrix is a new approach to predict β-turns through its protein sequence, the initial results for the prediction of β-turns and type classification are promising

    Deriving a mutation index of carcinogenicity using protein structure and protein interfaces

    Get PDF
    With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/

    Recurrent oligomers in proteins - an optimal scheme reconciling accurate and concise backbone representations in automated folding and design studies

    Full text link
    A novel scheme is introduced to capture the spatial correlations of consecutive amino acids in naturally occurring proteins. This knowledge-based strategy is able to carry out optimally automated subdivisions of protein fragments into classes of similarity. The goal is to provide the minimal set of protein oligomers (termed ``oligons'' for brevity) that is able to represent any other fragment. At variance with previous studies where recurrent local motifs were classified, our concern is to provide simplified protein representations that have been optimised for use in automated folding and/or design attempts. In such contexts it is paramount to limit the number of degrees of freedom per amino acid without incurring in loss of accuracy of structural representations. The suggested method finds, by construction, the optimal compromise between these needs. Several possible oligon lengths are considered. It is shown that meaningful classifications cannot be done for lengths greater than 6 or smaller than 4. Different contexts are considered were oligons of length 5 or 6 are recommendable. With only a few dozen of oligons of such length, virtually any protein can be reproduced within typical experimental uncertainties. Structural data for the oligons is made publicly available.Comment: 19 pages, 13 postscript figure

    Predicting protein function by machine learning on amino acid sequences – a critical evaluation

    Get PDF
    Copyright @ 2007 Al-Shahib et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Predicting the function of newly discovered proteins by simply inspecting their amino acid sequence is one of the major challenges of post-genomic computational biology, especially when done without recourse to experimentation or homology information. Machine learning classifiers are able to discriminate between proteins belonging to different functional classes. Until now, however, it has been unclear if this ability would be transferable to proteins of unknown function, which may show distinct biases compared to experimentally more tractable proteins. Results: Here we show that proteins with known and unknown function do indeed differ significantly. We then show that proteins from different bacterial species also differ to an even larger and very surprising extent, but that functional classifiers nonetheless generalize successfully across species boundaries. We also show that in the case of highly specialized proteomes classifiers from a different, but more conventional, species may in fact outperform the endogenous species-specific classifier. Conclusion: We conclude that there is very good prospect of successfully predicting the function of yet uncharacterized proteins using machine learning classifiers trained on proteins of known function

    Predicting Secondary Structures, Contact Numbers, and Residue-wise Contact Orders of Native Protein Structure from Amino Acid Sequence by Critical Random Networks

    Full text link
    Prediction of one-dimensional protein structures such as secondary structures and contact numbers is useful for the three-dimensional structure prediction and important for the understanding of sequence-structure relationship. Here we present a new machine-learning method, critical random networks (CRNs), for predicting one-dimensional structures, and apply it, with position-specific scoring matrices, to the prediction of secondary structures (SS), contact numbers (CN), and residue-wise contact orders (RWCO). The present method achieves, on average, Q3Q_3 accuracy of 77.8% for SS, correlation coefficients of 0.726 and 0.601 for CN and RWCO, respectively. The accuracy of the SS prediction is comparable to other state-of-the-art methods, and that of the CN prediction is a significant improvement over previous methods. We give a detailed formulation of critical random networks-based prediction scheme, and examine the context-dependence of prediction accuracies. In order to study the nonlinear and multi-body effects, we compare the CRNs-based method with a purely linear method based on position-specific scoring matrices. Although not superior to the CRNs-based method, the surprisingly good accuracy achieved by the linear method highlights the difficulty in extracting structural features of higher order from amino acid sequence beyond that provided by the position-specific scoring matrices.Comment: 20 pages, 1 figure, 5 tables; minor revision; accepted for publication in BIOPHYSIC

    The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases

    Get PDF
    One of the most intriguing groups of enzymes, the feruloyl esterases (FAEs), is ubiquitous in both simple and complex organisms. FAEs have gained importance in biofuel, medicine and food industries due to their capability of acting on a large range of substrates for cleaving ester bonds and synthesizing high-added value molecules through esterification and transesterification reactions. During the past two decades extensive studies have been carried out on the production and partial characterization of FAEs from fungi, while much less is known about FAEs of bacterial or plant origin. Initial classification studies on FAEs were restricted on sequence similarity and substrate specificity on just four model substrates and considered only a handful of FAEs belonging to the fungal kingdom. This study centers on the descriptor-based classification and structural analysis of experimentally verified and putative FAEs; nevertheless, the framework presented here is applicable to every poorly characterized enzyme family. 365 FAE-related sequences of fungal, bacterial and plantae origin were collected and they were clustered using Self Organizing Maps followed by k-means clustering into distinct groups based on amino acid composition and physico-chemical composition descriptors derived from the respective amino acid sequence. A Support Vector Machine model was subsequently constructed for the classification of new FAEs into the pre-assigned clusters. The model successfully recognized 98.2% of the training sequences and all the sequences of the blind test. The underlying functionality of the 12 proposed FAE families was validated against a combination of prediction tools and published experimental data. Another important aspect of the present work involves the development of pharmacophore models for the new FAE families, for which sufficient information on known substrates existed. Knowing the pharmacophoric features of a small molecule that are essential for binding to the members of a certain family opens a window of opportunities for tailored applications of FAEs
    • …
    corecore