6,090 research outputs found

    Electron-Ion Interaction Effects in Attosecond Time-Resolved Photoelectron Spectra

    Get PDF
    Photoionization by attosecond (as) extreme ultraviolet (xuv) pulses into the laser-dressed continuum of the ionized atom is commonly described in strong-field approximation (SFA), neglecting the Coulomb interaction between the emitted photoelectron (PE) and residual ion. By solving the time-dependent Sch\"{o}dinger equation (TDSE), we identify a temporal shift δτ\delta \tau in streaked PE spectra, which becomes significant at small PE energies. Within an eikonal approximation, we trace this shift to the combined action of Coulomb and laser forces on the released PE, suggesting the experimental and theoretical scrutiny of their coupling in streaked PE spectra. The initial state polarization effect by the laser pulse on the xuv streaked spectrum is also examined.Comment: 9 pages, Accepted by Phys. Rev.

    Attosecond physics at the nanoscale

    Get PDF
    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds, which is comparable with the optical field. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this article we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as ATI and HHG. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nano physics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution

    Effect of atomic scale plasticity on hydrogen diffusion in iron: Quantum mechanically informed and on-the-fly kinetic Monte Carlo simulations

    Get PDF
    We present an off-lattice, on-the-fly kinetic Monte Carlo (KMC) model for simulating stress-assisted diffusion and trapping of hydrogen by crystalline defects in iron. Given an embedded atom (EAM) potential as input, energy barriers for diffusion are ascertained on the fly from the local environments of H atoms. To reduce computational cost, on-the-fly calculations are supplemented with precomputed strain-dependent energy barriers in defect-free parts of the crystal. These precomputed barriers, obtained with high-accuracy density functional theory calculations, are used to ascertain the veracity of the EAM barriers and correct them when necessary. Examples of bulk diffusion in crystals containing a screw dipole and vacancies are presented. Effective diffusivities obtained from KMC simulations are found to be in good agreement with theory. Our model provides an avenue for simulating the interaction of hydrogen with cracks, dislocations, grain boundaries, and other lattice defects, over extended time scales, albeit at atomistic length scales

    Reactive Force Field for Proton Diffusion in BaZrO3 using an empirical valence bond approach

    Get PDF
    A new reactive force field to describe proton diffusion within the solid-oxide fuel cell material BaZrO3 has been derived. Using a quantum mechanical potential energy surface, the parameters of an interatomic potential model to describe hydroxyl groups within both pure and yttrium-doped BaZrO3 have been determined. Reactivity is then incorporated through the use of the empirical valence bond model. Molecular dynamics simulations (EVB-MD) have been performed to explore the diffusion of hydrogen using a stochastic thermostat and barostat whose equations are extended to the isostress-isothermal ensemble. In the low concentration limit, the presence of yttrium is found not to significantly influence the diffusivity of hydrogen, despite the proton having a longer residence time at oxygen adjacent to the dopant. This lack of influence is due to the fact that trapping occurs infrequently, even when the proton diffuses through octahedra adjacent to the dopant. The activation energy for diffusion is found to be 0.42 eV, in good agreement with experimental values, though the prefactor is slightly underestimated.Comment: Corrected titl

    Collisions of Slow Highly Charged Ions with Surfaces

    Get PDF
    Progress in the study of collisions of multiply charged ions with surfaces is reviewed with the help of a few recent examples. They range from fundamental quasi-one electron processes to highly complex ablation and material modification processes. Open questions and possible future directions will be discussed.Comment: 13 pages, 16 figures, review pape

    Structures, bonding and transport properties of high pressure solids

    Get PDF
    The objective of this investigation is to study the distinct physical and electronic properties of high-pressure solids, through state-of-the-art first-principles numerical computations. This thesis is composed of four distinct research topics.The superconducting properties of several high-pressure solids were investigated based on the Migdal-Eliashberg theory within the framework of the BCS model. The possibility of pressure-induced superconductivity was investigated for selected materials, including dense Li, Xe, and Group IV hydrides. The pressure-induced phase transition FCC ¡÷ cI16 in Li and the superconducting properties in the FCC and cI16 phases were investigated. Noble gas Xe is predicted being a superconductor under pressure with a comparatively low Tc. Two Group IV hydrides, SiH4 and SnH4, were predicted to be good superconductors under high pressure. The Bader¡¦s AIM analysis, IR and Raman spectroscopes were used as diagnostic tools to differentiate among candidate structural models for solid H2, O2, and SiH4. For solid H2, IR and Raman spectra are used to examine two recently proposed competing structures of the high-pressure phase III; the Cmcm and C2/c structures. For solid O2, the experiment observed structure, IR and Raman spectra of the recently solved C2/m structure of the high-pressure ƒÕ phase were well produced. Using Bader¡¦s AIM method and from the analysis of the electron charge density, the preference on the formation of (O2)4 clusters in the C2/m structure and the nature of the interactions between O2 molecules is explained. For SiH4, IR and Raman spectra were calculated for our predicted P42/nmc structure and the agreement with available experiment results is very good. On theoretical aspect, typical approaches for predicting/determining unknown high-pressure crystal structures usually involve dynamical processes. An alternate approach based on a recently proposed genetic algorithm was explored in this thesis. The focus is to predict stable and meta-stable structures at high pressure without any preference on initial structures. The high-pressure structures of Ca were investigated and two new stable structures that might explain the diffraction pattern of the Ca-IV and Ca-V phases were predicted. The high-pressure phase II and phase III of AlH3 were also investigated, and structures were successfully predicted for each phase. Another example presented is the prediction of a metastable single-bonded phase of nitrogen.A first-principles approach was developed for the calculation of XAS within the framework of the DFT. The PAW method was used to reconstruct the core orbitals. These orbitals are essential for the calculation of the transition matrix elements. This approach provides a straightforward framework for the investigation of single particle core hole and electron screening effects, which have been demonstrated to be significant for all investigated materials. To test the implementation, the C, Si, and O K-edge XAS were calculated for diamond, fullerene C60, £-quartz and water molecule. In all cases, the calculated XAS agree very well with experiments. For water molecule, the quality of the calculated XAS sensitively depends on the delicate theoretical treatment of core hole potential and electron screening. The overall agreement between the calculated XAS and experiment is reasonable

    Above threshold ionization by few-cycle spatially inhomogeneous fields

    Full text link
    We present theoretical studies of above threshold ionization (ATI) produced by spatially inhomogeneous fields. This kind of field appears as a result of the illumination of plasmonic nanostructures and metal nanoparticles with a short laser pulse. We use the time-dependent Schr\"odinger equation (TDSE) in reduced dimensions to understand and characterize the ATI features in these fields. It is demonstrated that the inhomogeneity of the laser electric field plays an important role in the ATI process and it produces appreciable modifications to the energy-resolved photoelectron spectra. In fact, our numerical simulations reveal that high energy electrons can be generated. Specifically, using a linear approximation for the spatial dependence of the enhanced plasmonic field and with a near infrared laser with intensities in the mid- 10^{14} W/cm^{2} range, we show it is possible to drive electrons with energies in the near-keV regime. Furthermore, we study how the carrier envelope phase influences the emission of ATI photoelectrons for few-cycle pulses. Our quantum mechanical calculations are supported by their classical counterparts
    • …
    corecore