2,837 research outputs found

    A review of the Development Trend of Personalized learning Technologies and its Applications

    Get PDF
    Personalized learning tailors material and strategy to student requirements, interests, and goals in e-learning. These developments help educational institutions and other organizations to keep up with the fast pace of information technology, communications, and computing power. Studies show that self-adaptive learning and relevant learning information improve study efficiency. Compared to traditional teaching methods, the practice of online education is well in its infancy. On the other hand, the pedagogy and evaluation of students in online courses have a large gap that has to be filled, necessitating significant improvements in e-learning. We call this approach to education "personalized learning," which is a central focus of today's leading online education platforms. Several studies have been conducted on e-learning and personalized learning, but few investigated the development trend of personalized learning technologies and applications. Therefore this study examines the literature to close the gap and promote the development trend for personalized learning technologies and applications in higher education from 2010 to 2021 by analyzing related journal articles. The pivotal studies used inclusion criteria after a search generated 372 complete research articles and reduced them to 146 publications based on their proposed learning domains and research themes. Through carefully reviewing current trends and successes in numerous aspects of personalized learning, this discussion analyzes prospective future research directions in the field of personalized learning

    Conceptual Model for the Use of Smart Glasses in Ubiquitous Teaching (u-teaching)

    Get PDF
    Smart glasses, a wearable headset technology, currently trending provides hands-free and augmented reality features. This paper looks at the research around mediated-reality tools to improve the delivery of education. Despite its potential, it has not seen widespread use in education. A suitable implementation framework and pedagogy have been proposed so that smart glasses can be used towards creating digitally-mediated learning (DML) environments. Aurasma is recommended as the implementation framework after a comparison with other frameworks based on factors such as cost, ease-of-use, and accessibility among others. For a suitable pedagogy, new assessment strategies, content personalization, and the use of 3-D learning spaces are recommended. It is argued, that the recommended framework and the pedagogy approach have the potential to improve learning environments for teachers and students. However, there are privacy concerns due to the pervasive nature of Augmented Reality (AR). In the current research, the overall learning environment is considered

    Subject benchmark statement: master's degrees in computing

    Get PDF

    Challenges Encountered in Creating Personalised Learning Activities to Suit Students Learning Preferences

    Get PDF
    This book chapter reviews some of the challenges encountered by educators in creating personalised e-learning activities to suit students learning preferences. Technology-enhanced learning (TEL) alternatively known as e-learning has not yet reached its full potential in higher education. There are still many potential uses as yet undiscovered and other discovered uses which are not yet realisable by many educators. TEL is still predominantly used for e-dissemination and e-administration. This chapter reviews the potential use of TEL to provide personalised learning activities to suit individual students learning preferences. In particular the challenges encountered by educators when trying to implement personalised learning activities based on individual students learning preferences

    Augmented Reality and Context Awareness for Mobile Learning Systems

    Get PDF
    Learning is one of the most interactive processes that humans practice. The level of interaction between the instructor and his or her audience has the greatest effect on the output of the learning process. Recent years have witnessed the introduction of e-learning (electronic learning), which was then followed by m-learning (mobile learning). While researchers have studied e-learning and m-learning to devise a framework that can be followed to provide the best possible output of the learning process, m-learning is still being studied in the shadow of e-learning. Such an approach might be valid to a limited extent, since both aims to provide educational material over electronic channels. However, m-learning has more space for user interaction because of the nature of the devices and their capabilities. The objective of this work is to devise a framework that utilises augmented reality and context awareness in m-learning systems to increase their level of interaction and, hence, their usability. The proposed framework was implemented and deployed over an iPhone device. The implementation focused on a specific course. Its material represented the use of augmented reality and the flow of the material utilised context awareness. Furthermore, a software prototype application for smart phones, to assess usability issues of m-learning applications, was designed and implemented. This prototype application was developed using the Java language and the Android software development kit, so that the recommended guidelines of the proposed framework were maintained. A questionnaire survey was conducted at the University, with approximately twenty-four undergraduate computer science students. Twenty-four identical smart phones were used to evaluate the developed prototype, in terms of ease of use, ease of navigating the application content, user satisfaction, attractiveness and learnability. Several validation tests were conducted on the proposed augmented reality m-learning verses m-learning. Generally, the respondents rated m-learning with augmented reality as superior to m-learning alone

    The role of mobile learning on the learning

    Get PDF

    Creating smarter teaching and training environments: innovative set-up for collaborative hybrid learning

    Get PDF
    This paper brings together previous work from a number of research projects and teaching initiatives in an effort to introduce good practice in setting up supportive environments for collaborative learning. The paper discusses prior use of social media in learning support, the role of dashboards for learning analytics in Global Software Development training, the use of optical head-mounted displays for feedback and the use of NodeXl visualization in managing distributed teams. The scope of the paper is to provide a structured approach in organizing the creation of smarter teaching and training environments and explore ways to coordinate learning scenarios with the use of various techniques. The paper also discusses challenges from integrating multiple innovative features in educational contexts. Finally the paper attempts to investigate the use of smart laboratories in establishing additional learning support and gather primary data from blended and hybrid learning pilot studies

    ALT-C 2010 - Conference Introduction and Abstracts

    Get PDF

    Creating smarter teaching and training environments: innovative set-up for collaborative hybrid learning

    Get PDF
    This paper brings together previous work from a number of research projects and teaching initiatives in an effort to introduce good practice in setting up supportive environments for collaborative learning. The paper discusses prior use of social media in learning support, the role of dashboards for learning analytics in Global Software Development training, the use of optical head-mounted displays for feedback and the use of NodeXl visualization in managing distributed teams. The scope of the paper is to provide a structured approach in organizing the creation of smarter teaching and training environments and explore ways to coordinate learning scenarios with the use of various techniques. The paper also discusses challenges from integrating multiple innovative features in educational contexts. Finally the paper attempts to investigate the use of smart laboratories in establishing additional learning support and gather primary data from blended and hybrid learning pilot studies
    corecore