8 research outputs found

    Process mining methodology for health process tracking using real-time indoor location systems

    Full text link
    [EN] The definition of efficient and accurate health processes in hospitals is crucial for ensuring an adequate quality of service. Knowing and improving the behavior of the surgical processes in a hospital can improve the number of patients that can be operated on using the same resources. However, the measure of this process is usually made in an obtrusive way, forcing nurses to get information and time data, affecting the proper process and generating inaccurate data due to human errors during the stressful journey of health staff in the operating theater. The use of indoor location systems can take time information about the process in an unobtrusive way, freeing nurses, allowing them to engage in purely welfare work. However, it is necessary to present these data in a understandable way for health professionals, who cannot deal with large amounts of historical localization log data. The use of process mining techniques can deal with this problem, offering an easily understandable view of the process. In this paper, we present a tool and a process mining-based methodology that, using indoor location systems, enables health staff not only to represent the process, but to know precise information about the deployment of the process in an unobtrusive and transparent way. We have successfully tested this tool in a real surgical area with 3613 patients during February, March and April of 2015.The authors want to acknowledge the work MySphera Company and Hospital General for their invaluable support. This work was supported in part by several projects; FASyS-Absolutely Safe and Healthy Factory (Spanish Ministry of Industry. CEN-20091034), MOSAIC-Models and simulation techniques for discovering diabetes influence factors (ICT-FP7-600914) and HEARTWAYS-Advanced Solutions for Supporting Cardiac Patients in Rehabilitation (ICT-SME-315659) EU Projects; and organizations like Tecnologias para la Salud y el Bienestar (TSB S.A.) and the Universitat Politecnica de Valencia.Fernández Llatas, C.; Lizondo, A.; Montón Sánchez, E.; Benedí Ruiz, JM.; Traver Salcedo, V. (2015). Process mining methodology for health process tracking using real-time indoor location systems. Sensors. 12:29821-29840. https://doi.org/10.3390/s151229769S298212984012Weske, M., van der Aalst, W. M. P., & Verbeek, H. M. W. (2004). Advances in business process management. Data & Knowledge Engineering, 50(1), 1-8. doi:10.1016/j.datak.2004.01.001Davidoff, F., Haynes, B., Sackett, D., & Smith, R. (1995). Evidence based medicine. BMJ, 310(6987), 1085-1086. doi:10.1136/bmj.310.6987.1085Reilly, B. M. (2004). The essence of EBM. BMJ, 329(7473), 991-992. doi:10.1136/bmj.329.7473.991Weiland, D. E. (1997). Why use clinical pathways rather than practice guidelines? The American Journal of Surgery, 174(6), 592-595. doi:10.1016/s0002-9610(97)00196-7Hunter, B., & Segrott, J. (2008). Re-mapping client journeys and professional identities: A review of the literature on clinical pathways. International Journal of Nursing Studies, 45(4), 608-625. doi:10.1016/j.ijnurstu.2007.04.001Lenz, R., Blaser, R., Beyer, M., Heger, O., Biber, C., Bäumlein, M., & Schnabel, M. (2007). IT support for clinical pathways—Lessons learned. International Journal of Medical Informatics, 76, S397-S402. doi:10.1016/j.ijmedinf.2007.04.012Blaser, R., Schnabel, M., Biber, C., Bäumlein, M., Heger, O., Beyer, M., … Kuhn, K. A. (2007). Improving pathway compliance and clinician performance by using information technology. International Journal of Medical Informatics, 76(2-3), 151-156. doi:10.1016/j.ijmedinf.2006.07.006Schuld, J., Schäfer, T., Nickel, S., Jacob, P., Schilling, M. K., & Richter, S. (2011). Impact of IT-supported clinical pathways on medical staff satisfaction. A prospective longitudinal cohort study. International Journal of Medical Informatics, 80(3), 151-156. doi:10.1016/j.ijmedinf.2010.10.012Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Fernández-Llatas, C., Meneu, T., Traver, V., & Benedi, J.-M. (2013). Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation. International Journal of Environmental Research and Public Health, 10(11), 5671-5682. doi:10.3390/ijerph10115671Schilling, M., Richter, S., Jacob, P., & Lindemann, W. (2006). Klinische Behandlungspfade. DMW - Deutsche Medizinische Wochenschrift, 131(17), 962-967. doi:10.1055/s-2006-939876Zannini, L., Cattaneo, C., Peduzzi, P., Lopiccoli, S., & Auxilia, F. (2012). Experimenting clinical pathways in general practice: a focus group investigation with Italian general practitioners. Journal of Public Health Research, 1(2), 30. doi:10.4081/jphr.2012.e30Rubin, H. R. (2001). The advantages and disadvantages of process-based measures of health care quality. International Journal for Quality in Health Care, 13(6), 469-474. doi:10.1093/intqhc/13.6.469Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 37(6), 1067-1080. doi:10.1109/tsmcc.2007.905750Li, N., & Becerik-Gerber, B. (2011). Performance-based evaluation of RFID-based indoor location sensing solutions for the built environment. Advanced Engineering Informatics, 25(3), 535-546. doi:10.1016/j.aei.2011.02.004Curran, K., Furey, E., Lunney, T., Santos, J., Woods, D., & McCaughey, A. (2011). An evaluation of indoor location determination technologies. Journal of Location Based Services, 5(2), 61-78. doi:10.1080/17489725.2011.562927Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Stübig, T., Zeckey, C., Min, W., Janzen, L., Citak, M., Krettek, C., … Gaulke, R. (2014). Effects of a WLAN-based real time location system on outpatient contentment in a Level I trauma center. International Journal of Medical Informatics, 83(1), 19-26. doi:10.1016/j.ijmedinf.2013.10.001Najera, P., Lopez, J., & Roman, R. (2011). Real-time location and inpatient care systems based on passive RFID. Journal of Network and Computer Applications, 34(3), 980-989. doi:10.1016/j.jnca.2010.04.011Huang, Z., Dong, W., Ji, L., Gan, C., Lu, X., & Duan, H. (2014). Discovery of clinical pathway patterns from event logs using probabilistic topic models. Journal of Biomedical Informatics, 47, 39-57. doi:10.1016/j.jbi.2013.09.003Caron, F., Vanthienen, J., Vanhaecht, K., Limbergen, E. V., De Weerdt, J., & Baesens, B. (2014). Monitoring care processes in the gynecologic oncology department. Computers in Biology and Medicine, 44, 88-96. doi:10.1016/j.compbiomed.2013.10.015Bouarfa, L., & Dankelman, J. (2012). Workflow mining and outlier detection from clinical activity logs. Journal of Biomedical Informatics, 45(6), 1185-1190. doi:10.1016/j.jbi.2012.08.003Disco https://fluxicon.com/disco/Van der Aalst, W., Weijters, T., & Maruster, L. (2004). Workflow mining: discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1128-1142. doi:10.1109/tkde.2004.47Wantland, D. J., Portillo, C. J., Holzemer, W. L., Slaughter, R., & McGhee, E. M. (2004). The Effectiveness of Web-Based vs. Non-Web-Based Interventions: A Meta-Analysis of Behavioral Change Outcomes. Journal of Medical Internet Research, 6(4), e40. doi:10.2196/jmir.6.4.e40Bellazzi, R., Montani, S., Riva, A., & Stefanelli, M. (2001). Web-based telemedicine systems for home-care: technical issues and experiences. Computer Methods and Programs in Biomedicine, 64(3), 175-187. doi:10.1016/s0169-2607(00)00137-1Van der Aalst, W. (2012). Process Mining. ACM Transactions on Management Information Systems, 3(2), 1-17. doi:10.1145/2229156.2229157MySphera Company http://mysphera.com/Van der Aalst, W. M. P., & de Medeiros, A. K. A. (2005). Process Mining and Security: Detecting Anomalous Process Executions and Checking Process Conformance. Electronic Notes in Theoretical Computer Science, 121, 3-21. doi:10.1016/j.entcs.2004.10.01

    Quantifying Quality of Life

    Get PDF
    Describes technological methods and tools for objective and quantitative assessment of QoL Appraises technology-enabled methods for incorporating QoL measurements in medicine Highlights the success factors for adoption and scaling of technology-enabled methods This open access book presents the rise of technology-enabled methods and tools for objective, quantitative assessment of Quality of Life (QoL), while following the WHOQOL model. It is an in-depth resource describing and examining state-of-the-art, minimally obtrusive, ubiquitous technologies. Highlighting the required factors for adoption and scaling of technology-enabled methods and tools for QoL assessment, it also describes how these technologies can be leveraged for behavior change, disease prevention, health management and long-term QoL enhancement in populations at large. Quantifying Quality of Life: Incorporating Daily Life into Medicine fills a gap in the field of QoL by providing assessment methods, techniques and tools. These assessments differ from the current methods that are now mostly infrequent, subjective, qualitative, memory-based, context-poor and sparse. Therefore, it is an ideal resource for physicians, physicians in training, software and hardware developers, computer scientists, data scientists, behavioural scientists, entrepreneurs, healthcare leaders and administrators who are seeking an up-to-date resource on this subject

    Quantifying Quality of Life

    Get PDF
    Describes technological methods and tools for objective and quantitative assessment of QoL Appraises technology-enabled methods for incorporating QoL measurements in medicine Highlights the success factors for adoption and scaling of technology-enabled methods This open access book presents the rise of technology-enabled methods and tools for objective, quantitative assessment of Quality of Life (QoL), while following the WHOQOL model. It is an in-depth resource describing and examining state-of-the-art, minimally obtrusive, ubiquitous technologies. Highlighting the required factors for adoption and scaling of technology-enabled methods and tools for QoL assessment, it also describes how these technologies can be leveraged for behavior change, disease prevention, health management and long-term QoL enhancement in populations at large. Quantifying Quality of Life: Incorporating Daily Life into Medicine fills a gap in the field of QoL by providing assessment methods, techniques and tools. These assessments differ from the current methods that are now mostly infrequent, subjective, qualitative, memory-based, context-poor and sparse. Therefore, it is an ideal resource for physicians, physicians in training, software and hardware developers, computer scientists, data scientists, behavioural scientists, entrepreneurs, healthcare leaders and administrators who are seeking an up-to-date resource on this subject

    2012-2013 Course Catalog

    Get PDF
    2012-2013 Course Catalo

    2013-2014 Course Catalog

    Get PDF
    2013-2014 Course Catalo

    2015-2016 Course Catalog

    Get PDF
    2015-2016 Course Catalo

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-
    corecore