1,145 research outputs found

    Noise Sources, Effects and Countermeasures in Narrowband Power-Line Communications Networks: A Practical Approach

    Get PDF
    The integration of Distributed Generation, Electric Vehicles, and storage without compromising the quality of the power delivery requires the deployment of a communications overlay that allows monitoring and controlling low voltage networks in almost real time. Power Line Communications are gaining momentum for this purpose since they present a great trade-off between economic and technical features. However, the power lines also represent a harsh communications medium which presents different problems such as noise, which is indeed affected by Distributed Generation, Electric Vehicles, and storage. This paper provides a comprehensive overview of the types of noise that affects Narrowband Power Line Communications, including normative noises, noises coming from common electronic devices measured in actual operational power distribution networks, and noises coming from photovoltaic inverters and electric vehicle charging spots measured in a controlled environment. The paper also reviews several techniques to mitigate the effects of noise, paying special attention to passive filtering, as for being one of the most widely used solution to avoid this kind of problems in the field. In addition, the paper presents a set of tests carried out to evaluate the impact of some representative noises on Narrowband Power Line Communications network performance, as well as the effectiveness of different passive filter configurations to mitigate such an impact. In addition, the considered sources of noise can also bring value to further improve PLC communications in the new scenarios of the Smart Grid as an input to theoretical models or simulations.This work has been partly funded by the Spanish Ministry of Economy and Competitiveness through the National Program for Research Aimed at the Challenges of Society under the project OSIRIS (RTC-2014-1556-3) and through the network of excellence REDYD2050 (ENE2015-70032-REDT)

    Conducted EMI Mitigation in Power Converters using Active EMI Filters

    Get PDF
    Wide bandgap devices enable high power density power converters. Despite the advantages of increased switching frequency, the passive components are still a major bottleneck towards enabling high power density. Among the passive components in the converter, the passive EMI filters are unavoidable to ensure compliance with conducted EMI standards. Active EMI filters help reduce the volume of the passive components and have been around for three decades now. Firstly, this work presents a summary of all the different active EMI filters based on the type of noise-sensing, noise-processing, the type of active circuits used and the type of control methods. This is followed by modeling, design and stability analysis of three different active EMI filters for DM noise attenuation. The first active EMI filter is a conventional active EMI filter. The key bottlenecks to improving performance of the conventional active EMI filter are identified while still achieving volume reduction of passive components. Following this two novel active EMI filters are presented that overcome the bottlenecks of conventional active EMI filter. The second active EMI filter is based on a analog twin-circuit. This novel filter uses a twin-circuit which enables the use of low-voltage surface-mount components for compensation. The third active EMI filter uses zero-phase filtering implemented in an FPGA. While all the filters are demonstrated for differential-mode noise, their use can be extended for common-mode noise attenuation

    Research study on multi-KW-DC distribution system

    Get PDF
    A detailed definition of the HVDC test facility and the equipment required to implement the test program are provided. The basic elements of the test facility are illustrated, and consist of: the power source, conventional and digital supervision and control equipment, power distribution harness and simulated loads. The regulated dc power supplies provide steady-state power up to 36 KW at 120 VDC. Power for simulated line faults will be obtained from two banks of 90 ampere-hour lead-acid batteries. The relative merits of conventional and multiplexed power control will be demonstrated by the Supervision and Monitor Unit (SMU) and the Automatically Controlled Electrical Systems (ACES) hardware. The distribution harness is supported by a metal duct which is bonded to all component structures and functions as the system ground plane. The load banks contain passive resistance and reactance loads, solid state power controllers and active pulse width modulated loads. The HVDC test facility is designed to simulate a power distribution system for large aerospace vehicles
    • …
    corecore