131 research outputs found

    Mars power system concept definition study. Volume 1: Study results

    Get PDF
    A preliminary top level study was completed to define power system concepts applicable to Mars surface applications. This effort included definition of power system requirements and selection of power systems with the potential for high commonality. These power systems included dynamic isotope, Proton Exchange Membrane (PEM) regenerative fuel cell, sodium sulfur battery, photovoltaic, and reactor concepts. Design influencing factors were identified. Characterization studies were then done for each concept to determine system performance, size/volume, and mass. Operations studies were done to determine emplacement/deployment maintenance/servicing, and startup/shutdown requirements. Technology development roadmaps were written for each candidate power system (included in Volume 2). Example power system architectures were defined and compared on a mass basis. The dynamic isotope power system and nuclear reactor power system architectures had significantly lower total masses than the photovoltaic system architectures. Integrated development and deployment time phasing plans were completed for an example DIPS and reactor architecture option to determine the development strategies required to meet the mission scenario requirements

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    AutoCharge: Autonomous Charging for Perpetual Quadrotor Missions

    Full text link
    Battery endurance represents a key challenge for long-term autonomy and long-range operations, especially in the case of aerial robots. In this paper, we propose AutoCharge, an autonomous charging solution for quadrotors that combines a portable ground station with a flexible, lightweight charging tether and is capable of universal, highly efficient, and robust charging. We design and manufacture a pair of circular magnetic connectors to ensure a precise orientation-agnostic electrical connection between the ground station and the charging tether. Moreover, we supply the ground station with an electromagnet that largely increases the tolerance to localization and control errors during the docking maneuver, while still guaranteeing smooth un-docking once the charging process is completed. We demonstrate AutoCharge on a perpetual 10 hours quadrotor flight experiment and show that the docking and un-docking performance is solidly repeatable, enabling perpetual quadrotor flight missions

    A lunar base reference mission for the phased implementation of bioregenerative life support system components

    Get PDF
    Previous design efforts of a cost effective and reliable regenerative life support system (RLSS) provided the foundation for the characterization of organisms or 'biological processors' in engineering terms and a methodology was developed for their integration into an engineered ecological LSS in order to minimize the mass flow imbalances between consumers and producers. These techniques for the design and the evaluation of bioregenerative LSS have now been integrated into a lunar base reference mission, emphasizing the phased implementation of components of such a BLSS. In parallel, a designers handbook was compiled from knowledge and experience gained during past design projects to aid in the design and planning of future space missions requiring advanced RLSS technologies. The lunar base reference mission addresses in particular the phased implementation and integration of BLS parts and includes the resulting infrastructure burdens and needs such as mass, power, volume, and structural requirements of the LSS. Also, operational aspects such as manpower requirements and the possible need and application of 'robotics' were addressed

    Investigation into the control of an upper-limb myoelectric prosthesis

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:DXN053608 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Characterizing the combined effect of electrostatics and polymer adhesion for elastomer-based electroadhesives

    Get PDF
    This dissertation presents work done in the fabrication and characterization of polymer-based electroadhesives to understand the underlying mechanisms of electroadhesion with the inclusion of soft polymers as the functional surface material. Electrostatic models for parallel plate and interdigitated electrodes provide insight into the effect of design parameters on electric fields. However, little work has been done to model how electrostatic force affect adhesion in soft electroadhesives while accounting for their mechanical and material properties. To this end, a basic friction model is presented to describe the critical shear force for a single electrode electroadhesive. The effect of voltage, contact area, dielectric thickness, and bulk thickness on shear adhesion is explored. It was shown that within a range of design parameters the basic friction model could accurately predict the critical shear force and with stiff dielectric layers higher compliance improved adhesion. However, improved models are required to cover behavior over a larger parameter space. To move beyond friction-based modeling, the combined effect of polymer adhesion and electrostatic force on conductive polymer layers is explored through performing JKR tack tests. Tack tests can measure the intrinsic adhesive property of a polymer, called the critical energy release rate. By performing JKR tack tests with two different tack systems, a rigid probe contacting a soft elastic surface and a soft probe contacting a rigid surface, it was shown that the combination of the two adhesion mechanisms can be described as a superposition of the critical energy release rate of the polymer and electrostatic force. Using these findings, a design framework is developed to combine gecko adhesives with electrostatics to increase the controllable adhesion range. Textured electroadhesives with arrays of spherical bumps were fabricated and showed an increase in adhesion up to 20x. The textured electroadhesives were also mounted onto 3D printed mounts to pick up various objects weighing from 2g to 60g. The work presented here provides a theoretical and design framework for future soft electroadhesives to build upon for applications from climbing robots to pick and place manufacturing

    CoM Estimation of Grasped Objects via Cost Effective Sensors

    Get PDF

    Design and Validation of an MR Conditional Upper Extremity Evaluation System to Study Brain Activation Patterns after Stroke

    Get PDF
    Stroke is the third leading cause of death and second most frequent cause of disability in the United States. Stroke rehabilitation methods have been developed to induce the cortical reorganization and motor-relearning that leads to stroke recovery. In this thesis, we designed and developed an MR conditional upper extremity reach and grasp movement evaluation system for the stroke survivors to study their kinematic performances in reach and grasp movement and the relationship between kinematic metrics and the recovery level measured by clinical assessment methods. We also applied the system into the functional MRI experiments to identify the ability to study motor performance with the system inside the scanner and the reach, grasp and reach-to-grasp movements related brain activation patterns. Our experiments demonstrates that ours system is an MR conditional system in the 3.0 Tesla magnetic field. It is able to measure the stroke survivors\u27 reach and grasp movement in terms of grasp aperture and elbow joint angles. We used the Mann Whitney U test to examine the significant metrics in each tasks and principle component analysis to decide the major metrics that are associated with the outcome. Then we discovered better recovery scores are associated with these major kinematic metrics such as larger maximal velocity, larger mean velocity, larger maximal movement angle, and longer time to peak velocity. Additional to these metrics, time to maximal angle, time to target and time to peak velocity could also be used as additional metrics to help predict the recovery and assess robot-assisted therapy and optimize task-oriented rehabilitation strategy. We also identified the movement related brain activations in the motor and sensory areas as well as cerebellum in both normal and stroke survivors

    Prosthetic Thumb

    Get PDF
    The Prosthetic Thumb Project is a senior design project completed by Biomedical Engineering Undergraduate students at California Polytechnic State University. This senior design project is aimed at designing a prosthetic thumb for a Cal Poly Pomona student who lost their thumb in an accident last year. The patient has ultimately lost between 30-40% of functionality of his left hand, and so we would like to give him that mobility back. Originally, the patient was worried about having a prosthesis, and wanted something more stagnant that would resemble the look of the thumb he lost. However, after working with him, we determined that in order to regain functionality of the left hand, he would need a body-powered prosthesis that will move with his thumb residual in order to mimic the natural motion of a hand. Since we are designing a product for our customer, we still wanted to make a design that does not entirely look mechanical. The prototype of our design was generated using the 3D printers at innovation sandbox. Our parts were printed using PLA in order to utilize the free resources to students and keep the cost of the prosthetic low. When undergoing compression testing, the parts were tested using the instron in the Biomedical Engineering lab. The proximal and distal pieces were secured, and tested up to a force of 500 N. The proximal pieces experienced minor cracks, but still withstood the overall force without any internal support. The distal pieces withstood the force of 500 N with no cracks when the force can from the side. We also tested using a “hyper-extension” method, meaning we secured the prosthetic to a model of the hand, and hung weights off of the distal piece. The Prosthetic Thumb Group will be working on the final product that is being delivered to the patient next quarter as well. We plan on changing the material of the 3D printed parts to give the prosthetic thumb more strength
    corecore