209 research outputs found

    Predicting growing stock volume of Eucalyptus plantations using 3-D point clouds derived from UAV imagery and ALS data

    Get PDF
    Estimating forest inventory variables is important in monitoring forest resources and mitigating climate change. In this respect, forest managers require flexible, non-destructive methods for estimating volume and biomass. High-resolution and low-cost remote sensing data are increasingly available to measure three-dimensional (3D) canopy structure and to model forest structural attributes. The main objective of this study was to evaluate and compare the individual tree volume estimates derived from high-density point clouds obtained from airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) in Eucalyptus spp. plantations. Object-based image analysis (OBIA) techniques were applied for individual tree crown (ITC) delineation. The ITC algorithm applied correctly detected and delineated 199 trees from ALS-derived data, while 192 trees were correctly identified using DAP-based point clouds acquired fromUnmannedAerialVehicles(UAV), representing accuracy levels of respectively 62% and 60%. Addressing volume modelling, non-linear regression fit based on individual tree height and individual crown area derived from the ITC provided the following results: Model E ciency (Mef) = 0.43 and 0.46, Root Mean Square Error (RMSE) = 0.030 m3 and 0.026 m3, rRMSE = 20.31% and 19.97%, and an approximately unbiased results (0.025 m3 and 0.0004 m3) using DAP and ALS-based estimations, respectively. No significant di erence was found between the observed value (field data) and volume estimation from ALS and DAP (p-value from t-test statistic = 0.99 and 0.98, respectively). The proposed approaches could also be used to estimate basal area or biomass stocks in Eucalyptus spp. plantationsinfo:eu-repo/semantics/publishedVersio

    Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019

    Get PDF
    Unmanned aerial vehicles (UAVs) are new platforms that have been increasingly used in the last few years for forestry applications that benefit from the added value of flexibility, low cost, reliability, autonomy, and capability of timely provision of high-resolution data. The main adopted image-based technologies are RGB, multispectral, and thermal infrared. LiDAR sensors are becoming commonly used to improve the estimation of relevant plant traits. In comparison with other permanent ecosystems, forests are particularly affected by climatic changes due to the longevity of the trees, and the primary objective is the conservation and protection of forests. Nevertheless, forestry and agriculture involve the cultivation of renewable raw materials, with the difference that forestry is less tied to economic aspects and this is reflected by the delay in using new monitoring technologies. The main forestry applications are aimed toward inventory of resources, map diseases, species classification, fire monitoring, and spatial gap estimation. This Special Issue focuses on new technologies (UAV and sensors) and innovative data elaboration methodologies (object recognition and machine vision) for applications in forestry

    The application of UASs in forest management and monitoring : challenges and opportunities for use in the Miombo woodland

    Get PDF
    DATA AVAILABILITY STATEMENT : The data are available on request from the corresponding authorThe Miombo woodland is the most extensive tropical woodland in south-central Africa. However, field sample plot data on forest cover changes, species distribution and carbon stocks in the Miombo ecoregion are inadequate for effective forest management. Owing to logistical challenges that come with field-based inventory methods, remote sensing plays an important role in supplementing field methods to fill in data gaps. Traditional satellite and manned aircraft remote sensing platforms have their own advantages and limitations. The advent of unmanned aerial systems (UASs) has made it possible to acquire forest data at unprecedented spatial and temporal scales. UASs are adaptable to various forest applications in terms of providing flexibility in data acquisition with different sensors (RGB, multispectral, hyperspectral, thermal and light detection and ranging (lidar)) at a convenient time. To highlight possible applications in the Miombo woodlands, we first provide an overview of the Miombo woodlands and recent progress in remote sensing with small UASs. An overview of some potential forest applications was undertaken to identify key prospects and challenges for UAS applications in the Miombo region, which will provide expertise and guidance upon which future applications in the Miombo woodlands should be based. While much of the potential of using UASs for forest data acquisition in the Miombo woodlands remains to be realized, it is likely that the next few years will see such systems being used to provide data for an ever-increasing range of forest applications.The United States Agency for International Development through Partnerships for Enhanced Engagement in Research (PEER) program, Oliver R Tambo African Research Chair Initiative (ORTARChI) project, an initiative of Canada’s International Development Research Centre (IDRC), South Africa’s National Research Foundation (NRF) and the Department of Science and Innovation (DSI), in partnership with the Oliver & Adelaide Tambo Foundation (OATF) and National Science and Technology Council, Zambia.https://www.mdpi.com/journal/forestsam2023Forestry and Agricultural Biotechnology Institute (FABI)Plant Production and Soil Scienc

    Assessing Biodiversity in Boreal Forests with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging

    Get PDF
    Forests are the most diverse terrestrial ecosystems and their biological diversity includes trees, but also other plants, animals, and micro-organisms. One-third of the forested land is in boreal zone; therefore, changes in biological diversity in boreal forests can shape biodiversity, even at global scale. Several forest attributes, including size variability, amount of dead wood, and tree species richness, can be applied in assessing biodiversity of a forest ecosystem. Remote sensing offers complimentary tool for traditional field measurements in mapping and monitoring forest biodiversity. Recent development of small unmanned aerial vehicles (UAVs) enable the detailed characterization of forest ecosystems through providing data with high spatial but also temporal resolution at reasonable costs. The objective here is to deepen the knowledge about assessment of plot-level biodiversity indicators in boreal forests with hyperspectral imagery and photogrammetric point clouds from a UAV. We applied individual tree crown approach (ITC) and semi-individual tree crown approach (semi-ITC) in estimating plot-level biodiversity indicators. Structural metrics from the photogrammetric point clouds were used together with either spectral features or vegetation indices derived from hyperspectral imagery. Biodiversity indicators like the amount of dead wood and species richness were mainly underestimated with UAV-based hyperspectral imagery and photogrammetric point clouds. Indicators of structural variability (i.e., standard deviation in diameter-at-breast height and tree height) were the most accurately estimated biodiversity indicators with relative RMSE between 24.4% and 29.3% with semi-ITC. The largest relative errors occurred for predicting deciduous trees (especially aspen and alder), partly due to their small amount within the study area. Thus, especially the structural diversity was reliably predicted by integrating the three-dimensional and spectral datasets of UAV-based point clouds and hyperspectral imaging, and can therefore be further utilized in ecological studies, such as biodiversity monitoring

    Assessing spring phenology of a temperate woodland : a multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations

    Get PDF
    PhD ThesisVegetation phenology is the study of plant natural life cycle stages. Plant phenological events are related to carbon, energy and water cycles within terrestrial ecosystems, operating from local to global scales. As plant phenology events are highly sensitive to climate fluctuations, the timing of these events has been used as an independent indicator of climate change. The monitoring of forest phenology in a cost-effective manner, at a fine spatial scale and over relatively large areas remains a significant challenge. To address this issue, unmanned aerial vehicles (UAVs) appear to be a potential new platform for forest phenology monitoring. The aim of this research is to assess the potential of UAV data to track the temporal dynamics of spring phenology, from the individual tree to woodland scale, and to cross-compare UAV results against ground and satellite observations, in order to better understand characteristics of UAV data and assess potential for use in validation of satellite-derived phenology. A time series of UAV data were acquired in tandem with an intensive ground campaign during the spring season of 2015, over Hanging Leaves Wood, Northumberland, UK. The radiometric quality of the UAV imagery acquired by two consumer-grade cameras was assessed, in terms of the ability to retrieve reflectance and Normalised Difference Vegetation Index (NDVI), and successfully validated against ground (0.84≤R2≥0.96) and Landsat (0.73≤R2≥0.89) measurements, but only NDVI resulted in stable time series. The start (SOS), middle (MOS) and end (EOS) of spring season dates were estimated at an individual tree-level using UAV time series of NDVI and Green Chromatic Coordinate (GCC), with GCC resulting in a clearer and stronger seasonal signal at a tree crown scale. UAV-derived SOS could be predicted more accurately than MOS and EOS, with an accuracy of less than 1 week for deciduous woodland and within 2 weeks for evergreen. The UAV data were used to map phenological events for individual trees across the whole woodland, demonstrating that contrasting canopy phenological events can occur within the extent of a single Landsat pixel. This accounted for the poor relationships found between UAV- and Landsat-derived phenometrics (R2<0.45) in this study. An opportunity is now available to track very fine scale land surface changes over contiguous vegetation communities, information which could improve characterization of vegetation phenology at multiple scales.The Science without Borders program, managed by CAPES-Brazil (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)

    Evaluation of low-cost Earth observations to scale-up national forest monitoring in Miombo Woodlands of Malawi

    Get PDF
    This study explored the extent that low-cost Earth Observations (EO) data could effectively be combined with in-situ tree-level measurements to support national estimates of Above Ground Biomass (AGB) and Carbon (C) in Malawi’s Miombo Woodlands. The specific objectives were to; (i) investigate the effectiveness of low-cost optical UAV orthomosaics in geo-locating individual trees and estimating AGB and C, (ii) scale-up the AGB estimates using the canopy height model derived from the UAV imagery, and crown diameter measurements; and (iii) compare results from (ii), ALOS-PALSAR-2, Sentinel1, ESA CCI Biomass Map datasets, and Sentinel 2 vis/NIR/SWIR band combination datasets in mapping biomass. Data were acquired in 2019 from 13 plots over Ntchisi Forest in 3-fold, vis-a-vis; (i) individual tree measurements from 0.1ha ground-based (gb) plots, (ii) 3-7cm pixel resolution optical airborne imagery from 50ha plots, and (iii) SAR backscatter and Vis/NIR/SWIR bands imagery. Results demonstrate a strong correlational relationship (R2 = 0.7, RMSE = 11tCha-1) between gb AGB and gb fractional cover percent (FC %), more importantly (R2 = 0.7) between gb AGB and UAV-based FC. Similarly, another set of high correlation (R2 = 0.9, RMSE = 7tCha-1; R2 = 0.8, RMSE = 8tCha-1; and R2 = 0.7) was observed between the gb AGB and EO-based AGB from; (i) ALOS-PALSAR-2, (ii) ESA-CCI-Biomass Map, and (iii) S1-C-band, respectively. Under the measurement conditions, these findings reveal that; (i) FC is more indicative of AGB and C pattern than CHM, (ii) the UAV can collect optical data of very high resolution (3-7cm resolution with ±13m horizontal geolocation error), and (iii) provides the cost-effective means of bridging the ground datasets to the wall-to-wall satellite EO data (£7 ha-1 compared to £30 ha-1, per person, provided by the gb system). The overall better performance of the SAR backscatter (R2 = 0.7 to 0.9) establishes the suitability of the SAR backscatter to infer the Miombo AGB and fractional cover with high accuracy. However, the following factors compromised the accuracy for both the SAR and optical measurements; leaf-off and seasonality (fire, aridness), topography (steep slopes of 18-74%), and sensing angle. Inversely, the weak to moderate correlation observed between the gb height and UAV FC % measurements (R2 = 0.4 to 0.7) are attributable to the underestimation systematic error that UAV height datasets are associated with. The visual lacunarity analysis on S2-Vis/NIR/SWIR composite band and SAR backscatter measurements demonstrated robust, consistent and homogenous spatial crown patterns exhibited particularly by the leaf-on tree canopies along riverine tree belts and cohorts. These results reveal the potential of vis/NIR/SWIR band combination in determining the effect of fire, rock outcrops and bare land/soil common in these woodlands. Coarsening the EO imagery to ≥50m pixel resolution compromised the accuracy of the estimations, hence <50m resolution is the ideal scale for these Miombo. Careful consideration of the aforementioned factors and incorporation of FC parameter in during estimation of AGB and C will go a long way in not only enhancing the accuracy of the measurements, but also in bolstering Malawi’s NFMS standards to yield carbon off-set payments under the global REDD+ mechanism

    Instance segmentation of standing dead trees in dense forest from aerial imagery using deep learning

    Get PDF
    "© 2022 The Author(s). Published by Elsevier B.V. on behalf of International Society of Photogrammetry and Remote Sensing (isprs). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)"Mapping standing dead trees, especially, in natural forests is very important for evaluation of the forest's health status, and its capability for storing Carbon, and the conservation of biodiversity. Apparently, natural forests have larger areas which renders the classical field surveying method very challenging, time-consuming, labor-intensive, and unsustainable. Thus, for effective forest management, there is the need for an automated approach that would be cost-effective. With the advent of Machine Learning, Deep Learning has proven to successfully achieve excellent results. This study presents an adjusted Mask R-CNN Deep Learning approach for detecting and segmenting standing dead trees in a mixed dense forest from CIR aerial imagery using a limited (195 images) training dataset. First, transfer learning is considered coupled with the image augmentation technique to leverage the limitation of training datasets. Then, we strategically selected hyperparameters to suit appropriately our model's architecture that fits well with our type of data (dead trees in images). Finally, to assess the generalization capability of our model's performance, a test dataset that was not confronted to the deep neural network was used for comprehensive evaluation. Our model recorded promising results reaching a mean average precision, average recall, and average F1-Score of 0.85, 0.88, and 0.87 respectively, despite our relatively low resolution (20 cm) dataset. Consequently, our model could be used for automation in standing dead tree detection and segmentation for enhanced forest management. This is equally significant for biodiversity conservation, and forest Carbon storage estimation.publishedVersio

    Manned Aircraft Versus Small Unmanned Aerial System—Forestry Remote Sensing Comparison Utilizing Lidar and Structure-From-Motion for Forest Carbon Modeling and Disturbance Detection

    Get PDF
    Sustainable forest management relies on the acquisition of timely (change detection) and accurate structural information of forest landscapes. Light detection and ranging (lidar) remote sensing platforms enable rapid, three-dimensional (3-D), structural data collection with a high spatial resolution. This study explores a functional carbon model applied to a dense, closed deciduous forest. Data are collected by manned airborne systems and unmanned aerial system, producing both lidar and structure-from-motion (SfM) 3-D mapping. A hybrid approach combining cost-effective SfM-generated data with lidar-derived digital elevation models also is explored, since the SfM fails to produce adequate terrain returns. Carbon modeling results are comparable to those achieved by the initial developers (r2 ¼ 0.64 versus r2 ¼ 0.72), despite the challenging uneven-aged forest environment. Vertical profiles, mapped utilizing a volumetric point density from the manned airborne lidar, are leveraged to train a binary classifier for disturbance detection. Producer’s accuracy, user’s accuracy, and Kappa statistic for disturbance detection are 94.1%, 92.2%, and 89.8%, respectively, showing a high likelihood of detecting disturbances (harvesting). The results bode well for the use of unmanned aerial system (UAS) systems, and either lidar or SfM, to assess forest stocking. Although disturbance detection is successful, further study is required to validate the use of UAS, and especially SfM, for this task
    • …
    corecore